7 resultados para C-60 ADDUCTS

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCα is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of ~60% of the catalytic activity of the mutant PKCα, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCα in immune complex kinase assays. The PKCα C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCα immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCα immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCα is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCα function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monomeric tellurides 4-RC6H4(SB)Te [SB = 2-(4,4'-N02C6H4CH=NC6H3-Me); R = H, 1a; Me,1b; OMe, 1c], which incidentally represent the first example of a telluride with 1,4-Te···N intramolecular interaction, have been prepared and characterized by solution and solid-state 125Te NMR, 13C NMR and X-ray crystallography. Interplay of weak C-H···O and C-H-··π{ interactions in the crystal lattice of 1b and1c are responsible for the formation of supramolecular motifs. These tellurides undergo expected oxidative addition reactions with halogens and interhalogens and also interact coordinatively with mercury(II) halides to give 1:2 complexes, HgX2[4-RC6H4(SB)Te]2 (X = CI, R = H, 2a; Me, 2b; OMe, 2c and X = Br, R = H, 3a; Me, 3b; and OMe, 3c) with no sign of Te-C bond cleavage, as has been reported for some 1,5-Te·· ·N(O) intramolecularly bonded tellurides. The complexes 2a and 3c are the first structurally characterized monomeric 1:2 adducts of mercury(II) halides with Te ligands. The 1,4-Te···N intramolecular interactions in the solid-state are retained in the complexes highlighting simultaneously the Lewis acid and base character of the Te(lI) atom. Packing of molecules in the crystal lattice of 2a
and 3c reveals that non-covalent C-H· . ·Cl/Br interactions involving metal-bound halogen atoms possess significant directionality and in
combination with coordinative covalent interactions may be of potential use in creating inorganic supramolecular synthons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training.

Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training.

These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkali-activated slag can totally disintegrate when exposed to 50 C. This paper presents a study of possible solutions to avoid this disintegration by using silica fume (SF) and fly ash (FA) to partially replaceslag. It was found that partial replacement of slag with SF significantly reduces strength loss. A mixture of 50% slag 50% SF (cured at 25 and 60 C) showed no strength loss after the exposure. In comparison, a55% drop of strength was observed in a mixture of 50% slag 50% FA (cured at 25 C) after the same exposure.However, the strength loss of this mixture was reduced by 50% when cured at 60 C. The presence oflime in AAS pastes increases the degree of strength loss after the exposure. The mechanisms for the abovestrength results are discussed in terms of hydration products and microcracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until now, it has been a challenge both in experiment and in theory to design new superhard materials with high hardness values that are comparable to that of diamond. Here, by using first-principles calculations, we have introduced two new phases for a carbon-rich C-N compound with stoichiometry C3N, which is predicted to be energetically stable or metastable with respect to graphite and solid N2 at ambient pressure. It is found that C3N has a layered structure containing graphitic layers sandwiched with freely rotated N2 molecules. The layer-structured C3N is calculated to transform into a three-dimensional C2221 structure at 9 GPa with sp3-hybridized C atoms and sp2-hybridized N atoms. Phonon dispersion and elastic constant calculations reveal the dynamical and mechanical stability of the C2221 phase of C3N at ambient pressure. Significantly, first-principles ideal strength calculations indicate that the C2221 phase of C3N is a superhard material with an estimated Vickers hardness (∼76 GPa) comparable to that of diamond (60-120 GPa). The present results shed strong light on designing new superhard materials in the C-N system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated double blind ingestions of placebo (PLA) versus 6% carbohydrate (CHO) either as capsules (c) or beverage (b) during 60 km self-paced cycling in the heat (32°C and 50% relative humidity). Ten well-trained males (mean ± SD: 26±3 years; 64.5±7.7 kg and 70.7±8.8 ml.kg-1.min-1 maximal oxygen consumption) completed four separate 60 km time trials (TT) punctuated by 1 km sprints (14, 29, 44, 59 km) whilst ingesting either PLAb or PLAc or CHOb or CHOc. The TT was not different among treatments (PLAb 130.26 11.2 min, CHOb 140.5±18.1 min, PLAc 143.1±29.2 min, CHOc 137.3±20.1 min; P>0.05). Effect size (Cohen's d) for time was only moderate when comparing CHOb - PLAb (d = 0.68) and PLAb - PLA c (d = 0.57) whereas all other ES were 'trivial' to 'small'. Mean speed throughout the trial was significantly higher for PLAb only (P<0.05). Power output was only different (P<0.05) between the sprints and low intensity efforts within and across conditions. Core and mean skin temperatures were similar among trials. We conclude that CHO ingestion is of little or no benefit as a beverage compared with placebo during 60 km TT in the heat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-C-Cr-Nb-B-Mo alloy powder and AISI 420 SS powder are deposited using laser cladding to increase the hardness for wear resistant applications. Mixtures from 0 to 100 wt.% were evaluated to understand the effect on the elemental composition, microstructure, phases, and microhardness. The mixture of carbon, boron and niobium in the Fe-C-Cr-Nb-B-Mo alloy powder introduces complex carbides into a Fe-based matrix of AISI 420 SS which increases its hardness. Hardness increased linearly with increasing Fe-C-Cr-Nb-B-Mo alloy, but substantial micro-cracking was observed in the clad layer at additions of 60 wt.% and above; related to a transition from a hypoeutectic alloy containing α-Fe/α' dendrites with an (Fe,Cr)2B and γ-Fe eutectic to primary and continuous carbo-borides M2B (where M represents Fe and Cr) and M23(B,C)6 carbides (where M represents Fe, Cr, Mo) with MC particles (where M represents Nb and Mo). The highest average hardness, for an alloy without micro-cracking, of 952 HV was observed in a 40 wt.% alloy. High stress abrasive scratch testing was conducted on all alloys at various loads (500, 1500, 2500 N). Alloy content was found to have a strong effect on the wear mode and the abrasive wear rate, and the presence of micro-cracks was detrimental to abrasive wear resistance.