44 resultados para Building materials.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to consider the embodied energy of building materials in the context of greenhouse gas emission mitigation strategies. Previous practice and research are highlighted where they have the potential to influence design decisions. Latest embodied energy figures are indicated, and the implications of applying these figures to whole buildings are discussed. Several practical examples are given to aid building designers in the selection of building materials for reduced overall life cycle greenhouse gas emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of mass-produced environmentally-benign housing is one of the critical factors in the transition to global sustainability. Such housing will need to be constructed from renewable and/or recycled materials, be conditioned using minimal or no non—renewable energy, and be affordable. The universal need for such built environment resource stewardship is urgent. In developing countries, the requirement is to shelter growing populations, and in industrialised countries, there is a need for an alternative to the current resource and nergy-intensive material usage in housing. While there are some good surveys of building materials made from renewable resources, such as the BEDP Environment Design Guide Pro 11 by Gelder (2002), there does not appear to be a comprehensive database of these materials linked to abundant and reliable supply. This paper reviews the current availability and potential usage of renewable materials applicable to Australian mainstream residential construction. It concludes that the current state of publicly available information is dispersed and embedded in multiple sources with variance in detail, incomplete access and uncertain comparison across the sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use or local architecture characteristics is regulated by the spatial planning and building code of Indonesia. Balinese tmditional architecture has existed, coloured the traditional architecture of Indonesia and can be used as Bali's identity that is different from other regions in Indonesia.On the other hand, the cost of such building is high and most of people in urban areas are unable to afford to build in the traditional architecture style, especially in the residential housing sector .. Some of the major components that determine the price of housing units are the price of land, building materials, labour and technology. In developing countries, the first and second components that affect the unit price of the building are building materials representing about 70% and skilled labour respectively (Ural, 1980). Based on this, a good strategy to adopt in order to minimize the price is to manipulate these two components.Based on a literature review and observation, this study will explain which aspects of building material technology can reduce the building cost and how it can maintain the identity of local architecture.The results of the study indicate that the building material can be created to both reduce cost and adopt traditional architecture style as an identity. The materials have some shapes that can be joined easily to facilitate the skill of the worker and yet still be able to adopt the forms of traditional Balinese architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demolition of constructed structures has earned a negative reputation for the construction industry due to the enormous amount of waste that is sent to landfills. Demolition waste reuse and recycling is, therefore, significant; it is a new and illustrative perspective on demolition waste management from the viewpoint of the building material lifecycle. It is discovered that demolition waste reuse and recycling plays important roles in value transformation for building material lifecycle, local economics,
sustainable environment and nature resource conservation. In this research article, the authors aim to pinpoint demolition waste management in the lifecycle of building materials, and to examine various economic and environmental aspects of demolition waste reuse and recycling. In addition, the barriers, limitations and solutions for improving the implementation of demolition waste reuse and recycling are discussed in the article.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conventional mechanical building demolition produces numerous solid wastes, most of which are sent to landfill directly and severely degrade the living environment. Just-in-time building demolition has been developed recently with a management strategy to facilitate waste reuse. Procurement management plays a significant role in just-in-time building demolition. In particular, the demolition tendering selection needs to consider contractors' environmental performance in addition to project costs. Moreover, the flow of building materials in a demolition project may be regarded as a supply chain involving the building owner, demolition contractor and material demanders. This paper develops a framework for salvaged materials management in the emerging demolition industry. The research is to promote the recycling and reuse of building demolition materials in order to achieve better environmental and financial performance for building demolition projects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Building demolition imposes substantial environmental impacts. In particular, large amount of demolition wastes are disposed to landfills. A solution to ease the situation is to maximally reuse and recycle waste building material. Management philosophies such as Just-in-time are applied into demolition project management in order to promote reuse and recycling of demolition wastes. Transportation logistics, widely applied in the manufacturing industry, is ideal to be adopted into demolition projects to optimise waste material production, inventorying, and transportation. In particular, it enables right types and amounts of dismantled building materials to be transferred to right location, and at right time, as required by material demanders. Consequently, waste reuse and recycling can be facilitated. Furthermore, logistics management helps the demolition project team to reduce cost, shorten project duration, and satisfy material demanders. Transportation planning concerns thorough preparation technically and managerially on the demolition site for transportation activities. Information exchange is playing a significant role in delivering and sharing information among project participants, including building owner, demolition project team, potential material demanders, and transporters. This research paper aims to identify the role of transportation logistics in a building demolition project and to analyse inventory control, transportation, and various technical aspects of logistic management for demolition wastes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a context of global warming and our needs to reduce CO\d2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such airtight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats.

This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favorable interior environment. It introduces several criteria and requirements of advanced fa\acades along with interior pressurization control. Furthermore, the paper also takes a closer look at the principles of "biomimicry" of natural systems combined with the most up-to-date building materials and construction technologies, trying to integrate the notions of adaptation - where the capacity to survive depends on the ability to adjust to the environment - within the concept of technological evolution and innovation. An "adaptive" attitude in the way in which we conceive our built structures provides a conceptual basis for the advanced building design of our future, as well as one concerned about the efficient management of the available resources. Built environments of the future (in extreme climates or not) will need to respond to Renewable, Adaptive, Recyclable and Environmental (R.A.R.E.) concepts in order to coexist in a sustainable way with their surroundings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Buildings have a significant impact on environmental quality, resource use, human health and productivity. One definition of sustainable building is that which meets current building needs and reduces impacts on future generations by integrating building materials and methods that promote environmental quality, economic vitality, and social benefit’ (City of Seattle, 2006). In response to a changing view of
sustainability the Building Code of Australia (BCA) adopted energy measures in 2005 to residential buildings and, in 2006, to Class 1 – 9 buildings. In many respects the measures represented a watershed for the Australian Building Regulations which had not included sustainability within the BCA. The goals of the BCA are to enable the achievement and maintenance of acceptable standards of structural sufficiency, safety (including safety from fire), health and amenity for the benefit of the community now and in the future (ABCB, 2004a). As with any change some Building Surveyors and construction practitioners viewed these measures with apprehension. How would the measures be assessed? Furthermore, was the BCA the appropriate place for these measures and was this a broadening of the scope of the building regulations beyond
its traditional remit of health and life safety in buildings? This research used a questionnaire survey the canvass the views and perceptions of Building Surveyors and Architects with regards to sustainability and the BCA in 2006.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Use of high reflectance surfaces reduces the amount of solar radiation absorbed through building envelopes and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high reflectance surfaces have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of numerical simulations to analyze the effect of commonly used building materials on the air temperature. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. A series of Computational Fluid Dynamics (CFD) simulations have been carried out using the software CFX-5.6. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.5[degrees]C with the facade material having lower reflectance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The threat of dangerous levels of global warming demand that we significantly reduce carbon emissions over the coming decades. Globally, carbon emissions from all energy end-uses in buildings in 2004 were estimated to be 8.6 Gt CO2 or almost one quarter of total CO2 emissions (IPCC 2007). In Australia, nearly ten per cent of greenhouse gases come from the residential sector (DCCEE 2012). However, it is not merely the operation of the buildings that contributes to their CO2 emissions, but the energy used over their entire life cycle. Research has demonstrated that the embodied energy of the construction materials used in a building can sometimes equal the operational energy over the building’s entire lifetime (Crawford 2011). Therefore the materials used in construction need to be carefully considered. Conventional building materials not only represent high levels of embodied energy but also use resources that are finite and are being depleted. Renewable building materials are those materials that can be regenerated quickly enough to remove the threat of depletion and in theory their production could be carbon-neutral. To assess the potential for renewable building materials to reduce the embodied energy content of residential construction, the embodied energy of a small residential building has been determined. Wherever possible, the conventional construction materials were then replaced by commercially-available renewable building materials. The embodied energy of the building was then recalculated. The analysis showed that the embodied energy of the building could be reduced from 7.5 GJ per m2 to 5.4 GJ per m2 i.e. by 28%. The commercial availability of renewable materials, however, was a limiting factor and indicated that the industry is not yet well positioned to embrace this strategy to reduce embodied energy of construction. While some conventional building materials could readily be replaced, in many instances a renewable substitute could not be found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research in pursuit of an effective response to the demands for a sustainable architecture has lead towards the conception of a Renewable, Adaptive, Recyclable and Environmental (R.A.R.E.) building typology. The term R.A.R.E. expresses issues that have assumed central importance in the current architectural debate. This paper establishes the principles of the typology, drawing on the contents and pedagogical methods applied in a building technology academic course, at fourth year level. The R.A.R.E methodology is presented to and explored by students in the search for a definition of an innovative architecture, which is both progressive and sustainable. The unit is structured into eight subjects: Sustainable Site & Climate Analysis; Flexible & Adaptive Structural Systems; Renewable & Environmental Building Materials; Modular Building Systems; Innovative Building Envelope Systems; Renewable & Non-conventional Energy Systems; Innovative Heating, Ventilation & Air Conditioning Systems; Water Collection & Storage Systems. Through a holistic and integrated approach, the unit presents a comprehensive overview of these ‘Sustainable Building Categories’, so that the students can produce a guide towards the design requirements of a Renewable, Adaptive, Recyclable and Environmental (R.A.R.E.) Architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

R.A.R.E. stands for Renewable Adaptive Recyclable Environmental Architecture; the acronym expresses a demand that is becoming increasingly important today in the eyes of designers and clients. The paper draws on the contents and the pedagogical methods applied in a Building Technology Unit (SRT 450) – at forth year level – at the School of Architecture and Building, Deakin University, Australia. The unit is basically structured upon eight subjects derived as relevant to the research and development for a R.A.R.E. Architecture: Sustainable Site & Climate Analysis; Flexible & Adaptive Structural Systems; Renewable Adaptive & Environmental Building Materials; Modular Building Systems; Innovative Building Envelope Systems; Renewable or Non-conventional Energy Systems; Innovative Heating, Ventilation & Air Conditioning; Water Storage & Systems. The overall objective of the unit is to present a comprehensive overview of all these Sustainable Building Categories (SBCs) so that the students can produce a guide towards the design of a R.A.R.E. Architecture. The push towards a holistic and integrated approach will contribute to the definition of an innovative architecture, which is both progressive and sustainable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water consumed directly by the construction industry is known to be of little importance. However, water consumed in the manufacture of goods and services required by construction may be significant in the context of a building's life cycle water requirements and the national water budget. This paper evaluates the significance of water embodied in the construction of individual buildings. To do this, an input-output-based hybrid embodied water analysis was undertaken on 17 Australian non-residential case studies. It was found that there is a considerable amount of water embodied in construction. The highest value was 20.1 kilolitres (kL)/m2 gross floor area (GFA), representing many times the enclosed volume of the building, and many years worth of operational water. The water required by the main construction process is minimal. However, the water embodied in building materials is considerable. These findings suggest that the selection of elements and materials has a great impact on a building's embodied water. This research allows the construction industry to evaluate design and construction in broad environmental terms to select options that might be cost neutral or possibly cost positive while retaining their environmental integrity. The research suggests policies focused on operational water consumption alone are inadequate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ratification of the Kyoto Protocol by most industrial nations will result in an international greenhouse emissions trading market by or before 2008. Calculating the quantity of embodied energy in commercial buildings has therefore taken on added significance because it is in the creation of energy that most greenhouse gas that causes global warming is released. For energy efficient commercial buildings in Australia, the embodied energy can typically represent between 10 and 20 years of operational energy. When greenhouse emissions trading is introduced in Australia the cost of energy will rise significantly, particularly electricity which relies primarily on burning fossil fuels for generation. This will affect not only the operating energy costs of buildings (light, power & heating/cooling) but also the cost of building materials and construction. Early estimates of the potential cost of future greenhouse emission permits in Australia vary between $IO/tonne to $180Itonne. This cost would be imposed primarily on the producers of energy and passed on by them to consumers via higher energy costs. For a typical commercial building this could lead to an increase in the total procurement cost of buildings of up to 20% due to the energy embodied during the construction or refurbishment of the building. To assist in evaluating these potential cost increases McKean & Park, Sinclair Knight Merz and Deakin University have developed a web-based Carbon Cost Calculator for commercial buildings.