10 resultados para Bromoindole alkaloid

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotiana glauca (Argentinean tree tobacco) is atypical within the genus Nicotiana, accumulating predominantly anabasine rather than nicotine and/or nornicotine as the main component of its leaf pyridine alkaloid fraction. The current study examines the role of the A622 gene from N. glauca (NgA622) in alkaloid production and utilises an RNAi approach to down-regulate gene expression and diminish levels of A622 protein in transgenic tissues. Results indicate that RNAi-mediated reduction in A622 transcript levels markedly reduces the capacity of N. glauca to produce anabasine resulting in plants with scarcely any pyridine alkaloids in leaf tissues, even after damage to apical tissues. In addition, analysis of hairy roots containing the NgA622-RNAi construct shows a substantial reduction in both anabasine and nicotine levels within these tissues, even if stimulated with methyl jasmonate, indicating a role for the A622 enzyme in the synthesis of both alkaloids in roots of N. glauca. Feeding of Nicotinic Acid (NA) to hairy roots of N. glauca containing the NgA622-RNAi construct did not restore capacity for synthesis of anabasine or nicotine. Moreover, treatment of these hairy root lines with NA did not lead to an increase in anatabine levels, unlike controls. Together, these results strongly suggest that A622 is an integral component of the final enzyme complex responsible for biosynthesis of all three pyridine alkaloids in Nicotiana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to producing medicinally important tropane alkaloids, some species in the mainly Australian Solanaceous tribe Anthocercideae, sister to genus Nicotiana, are known to also contain substantial levels of the pyridine alkaloids nicotine and nornicotine. Here, we demonstrate that axenic hairy root cultures of two tribe Anthocercideae species, Cyphanthera tasmanica Miers and Anthocercis ilicifolia ssp. ilicifolia Hook, contain considerable amounts of both nicotine and nornicotine (∼0.5-1% DW), together with lower levels of the tropane alkaloid hyoscyamine (<0.2% DW). Treatment of growing hairy roots of both species with micromolar levels of the wound stress hormone methyl-jasmonate (MeJa) led to significant increases (P<0.05) in pyridine alkaloid concentrations but not of hyoscyamine. Consistent with previous studies involving Nicotiana species, we also observed that transcript levels of key genes required for pyridine alkaloid synthesis increased in hairy roots of both Anthocercideae species following MeJa treatment. We hypothesise that wound-associated induction of pyridine alkaloid synthesis in extant species of tribe Anthocercideae and genus Nicotiana was a feature of common ancestral stock that existed before the separation of both lineages ∼15million years ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the determination of opiate alkaloids (morphine, codeine, oripavine and thebaine) in industrial process liquors using capillary zone electrophoresis with UV-absorption detection at 214 nm. A study of cyclodextrin type and concentration revealed that the addition of 30 mM hydroxypropyl-β-cyclodextrin to the electrolyte solution (100 mM Tris adjusted to pH 2.8) was suitable to resolve the four analytes of interest. Typical analysis time was 12 min and the limit of detection for each alkaloid was 2.5 × 10−6 M. The results for the proposed methodology were in good agreement with those of a conventional HPLC procedure. Under the same conditions, short-end injection was used to reduce the effective separation length from 41.5 to 8.5 cm, which allowed the determination of morphine and thebaine in process liquors within 2.5 min.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown.
Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong.
Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factors of the plant-specific apetala2/ethylene response factor (AP2/ERF) family control plant secondary metabolism, often as part of signalling cascades induced by jasmonate (JA) or other elicitors. Here, we functionally characterized the JA-inducible tobacco (Nicotiana tabacum) AP2/ERF factor ORC1, one of the members of the NIC2-locus ERFs that control nicotine biosynthesis and a close homologue of ORCA3, a transcriptional activator of alkaloid biosynthesis in Catharanthus roseus. ORC1 positively regulated the transcription of several structural genes coding for the enzymes involved in nicotine biosynthesis. Accordingly, overexpression of ORC1 was sufficient to stimulate alkaloid biosynthesis in tobacco plants and tree tobacco (Nicotiana glauca) root cultures. In contrast to ORCA3 in C. roseus, which needs only the GCC motif in the promoters of the alkaloid synthesis genes to induce their expression, ORC1 required the presence of both GCC-motif and G-box elements in the promoters of the tobacco nicotine biosynthesis genes for maximum transactivation. Correspondingly, combined application with the JA-inducible Nicotiana basic helix–loop–helix (bHLH) factors that bind the G-box element in these promoters enhanced ORC1 action. Conversely, overaccumulation of JAZ repressor proteins that block bHLH activity reduced ORC1 functionality. Finally, the activity of both ORC1 and bHLH proteins was post-translationally upregulated by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated protein kinase kinase, JA-factor stimulating MAPKK1 (JAM1), was identified. This study highlights the complexity of the molecular machinery involved in the regulation of tobacco alkaloid biosynthesis and provides mechanistic insights about its transcriptional regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.