5 resultados para Bromine.

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances, it remains highly attractive but challenging to create high-performance polymeric materials combining excellent flame-retardancy and outstanding thermal, mechanical and electrical properties. We herein demonstrate a novel strategy for fabricating a multifunctional nano-additive (Br-Sb2O3@RGO) based on graphene decorated with bromine and nano-Sb2O3. Cone calorimetric tests show that incorporating 10 wt% Br-Sb2O3@RGO into thermoplastic polyurethane (TPU) strikingly prolongs the time to ignition and decreases the peak heat release rate by 72%. Besides, tensile strength and Young's modulus are enhanced by 37% and 820%, respectively. Meanwhile, the electric conductibility is increased by eleven orders of magnitude relative to the TPU matrix. This work provides a promising strategy for addressing the critical bottleneck with the existing flame retardants that only enhance flame retardancy at the expense of mechanical properties of polymeric materials. As-prepared high-performance TPU composites are expected to find many applications, especially in aerospace, tissue engineering, and cables and wires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CI2H8BrN, monoclinic, Pl21/cl (No. 14), a = 7.555(6) Å, b =7.727(3) Å, c =16.643(2) Å, β =98.95(2)°, V =959.8 Å3 , Z =4, Rgt(F) =0.033, wRref(F2) =0.097, T =173 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA, Cytoxan, or Neosar), ifosfamide (IFO, Ifex) and trofosfamide (Ixoten) represent an important group of therapeutic agents due to their substantial antitumor and immunomodulating activity. However, several intrinsic limitations have been uncounted during the clinical use of these oxazaphosphorines, including substantial pharmacokinetic variability, resistance and severe host toxicity. To circumvent these problems, new oxazaphosphorines derivatives have been designed and evaluated with an attempt to improve the selectivity and response with reduced host toxicity. These include mafosfamide (NSC 345842), glufosfamide (D19575, β-Dglucosylisophosphoramide mustard), S-(-)-bromofosfamide (CBM-11), NSC 612567 (aldophosphamide perhydrothiazine) and NSC 613060 (aldophosphamide thiazolidine). Mafosfamide is an oxazaphosphorine analog that is a chemically stable 4-thioethane sulfonic acid salt of 4-hydroxy-CPA. Glufosfamide is IFO derivative in which the isophosphoramide mustard, the alkylating metabolite of IFO, is glycosidically linked to a β-D-glucose molecule. Phase II studies of glufosfamide in the treatment of pancreatic cancer, non-small cell lung cancer (NCSLC), and recurrent glioblastoma multiform (GBM) have recently completed and Phase III trials are ongoing, while Phase I studies of intrathecal mafosfamide have recently completed for the treatment of meningeal malignancy secondary to leukemia, lymphoma, or solid tumors. S-(-)- bromofosfamide is a bromine-substituted IFO analog being evaluated in a few Phase I clinical trials. The synthesis and development of novel oxazaphosphorine analogs with favourable pharmacokinetic and pharmacodynamic properties still constitutes a great challenge for medicinal chemists and cancer pharmacologists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pinacolyltellurium(IV) dihalides, (t-BuCOCH2)2TeX2 (X ) Br (1b), I (1c)) and Ar(t-BuCOCH2)TeCl2 (Ar == 1-C10H7 (Np) (2a), 2,4,6-Me3C6H2 (Mes) (3a)), are readily prepared at room temperature by the oxidative insertion of elemental tellurium into the Csp3-Br or -I bond of the α-halopinacolone and by the reaction of ArTeCl3 with the pinacolone t-BuCOCH3. The bromides Np(t-BuCOCH2)TeBr2 (2b) and Mes(t-BuCOCH2)TeBr2 (3b) can be prepared by the addition of bromine to the telluride Ar(t-BuCOCH2)-Te or of α-bromopinacolone to ArTeBr. Variable-temperature 1H and 13C NMR of the separate signals for the o-Me groups in 3a,b indicate a very high barrier to rotation about the Te-C(aryl) bond. Crystal diffraction data for 1c, 2a-c, and 3b show that intramolecular 1,4-Te …O(C) secondary bonding interactions (SBIs) are retained even in the presence of bulky aryl groups and intermolecular Te …X SBIs are subject to electronic population and steric congestion around the Te(IV) center in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (y=H (1a), Me (1b), MeO (1c)) can be prepared
either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (y = H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCh (y = H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a--c with S02Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2Teh (y = H
(4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of la--c with KI, or alternatively, by the oxidative addition of
iodine to 2a--c. The reaction of 2a--c with allyl bromide affords the diorganotellurium dibrornides la--c, rather than the expected
triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, l3C and 125Te
NMR spectroscopy (solution and solid-state) and in case of Ie also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.