4 resultados para Boundary layer, lower

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores.

Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations.

Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m−3), we have also calculated a value of ~17 Tg yr−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–104 m−3; ~0.1–1 μg m−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m−3 and ~50 Tg yr−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr−1 of anthropogenic primary organic aerosol; 12–70 Tg yr−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finite-element method is used to predict the buoyancy-driven convection in a horizontal layer of fluid (aluminum melt) overlying a porous layer (cathode) saturated with the same fluid. This work aims to compare the Hall–Héroult process in electrolytic cell, where a layer of molten aluminum is reduced over the porous cathode surface. In this study, the physical system of the aluminum melt (fluid) and cathode (porous) together is considered as a composite system of fluid overlying porous layer. The main objective of this study to analyse the velocity components in thin fluid layer and its impact on a porous cathode surface if there is any. In addition, an externally imposed time-independent uniform magnetic field is used to analyse its influence on natural convective forces. The physical system of fluid overlying porous layer is analysed at different Hartmann, Darcy, and fluid-Rayleigh numbers for a fixed Prandtl number (Pr = 0.014). The predicted data show that the convective forces, caused by buoyancy-driven flow, are significant. It is shown that the velocity peaks moves toward the solid wall because of the presence of a magnetic field creating a stronger boundary-layer growth over the permeable cathode surface. The predicted results are plotted in terms of average Nusselt number and Darcy number to indicate the influence of pores and permeability on overall convective heat-transfer characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurements of the horizontal velocity component were made for a horizontal wall-jet emanating from a submerged sluice gate forming one side of a large flow compartment. The existence of large-scale vortex structures was quantified by spectral analysis of the velocity measurements taken at various distances from the floor of the flow compartment, for different measurement stations from the jet exit. Close to the jet exit, the spectra of the velocity measurements within the potential core exhibit multiple peaks. Further downstream, the spectra are more defined and peak at the same frequency, irrespective of whether the measurements were made within the potential core or the mixing layer. The spectral peak corresponds to the passage frequency of large-scale vortex structures. Downstream of the potential core, the peak frequencies of the velocity spectra increase as the measurement location was moved towards the floor of the flow compartment. The increase in peak frequencies is attributed to fluctuations associated with the wall boundary layer. Predictions of the mixing layer instabilities were made using linear stability analysis. The predictions are in good agreement with the observed vortex shedding frequencies in the mixing layer