9 resultados para Boundary detection

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The detection of lane boundaries on suburban streets using images obtained from video constitutes a challenging task. This is mainly due to the difficulties associated with estimating the complex geometric structure of lane boundaries, the quality of lane markings as a result of wear, occlusions by traffic, and shadows caused by road-side trees and structures. Most of the existing techniques for lane boundary detection employ a single visual cue and will only work under certain conditions and where there are clear lane markings. Also, better results are achieved when there are no other onroad objects present. This paper extends our previous work and discusses a novel lane boundary detection algorithm specifically addressing the abovementioned issues through the integration of two visual cues. The first visual cue is based on stripe-like features found on lane lines extracted using a two-dimensional symmetric Gabor filter. The second visual cue is based on a texture characteristic determined using the entropy measure of the predefined neighbourhood around a lane boundary line. The visual cues are then integrated using a rulebased classifier which incorporates a modified sequential covering algorithm to improve robustness. To separate lane boundary lines from other similar features, a road mask is generated using road chromaticity values estimated from CIE L*a*b* colour transformation. Extraneous points around lane boundary lines are then removed by an outlier removal procedure based on studentized residuals. The lane boundary lines are then modelled with Bezier spline curves. To validate the algorithm, extensive experimental evaluation was carried out on suburban streets and the results are presented. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral element method is very efficient in modelling high-frequency stress wave propagation because it works in the frequency domain. It does not need to use very fine meshes in order to capture high frequency wave energy as the time domain methods do, such as finite element method. However, the conventional spectral element method requires a throw-off element to be added to the structural boundaries to act as a conduit for energy to transmit out of the system. This makes the method difficult to model wave reflection at boundaries. To overcome this limitation, imaginary spectral elements are proposed in this study, which are combined with the real structural elements to model wave reflections at structural boundaries. The efficiency and accuracy of this proposed approach is verified by comparing the numerical simulation results with measured results of one dimensional stress wave propagation in a steel bar. The method is also applied to model wave propagation in a steel bar with not only boundary reflection, but also reflections from single and multiple cracks. The reflection and transmission coefficients, which are obtained from the discrete spring model, are adopted to quantify the discontinuities. Experimental tests of wave propagation in a steel bar with one crack of different depths are also carried out. Numerical simulations and experimental results show that the proposed method is effective and reliable in modelling wave propagation in one-dimensional waveguides with reflections from boundary and structural discontinuities. The proposed method can be applied to effectively model stress wave propagation for structural damage detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present improved algorithms for automatic fade and dissolve detection in digital video analysis. We devise new two-step algorithms for fade and dissolve detection and introduce a method for eliminating false positives from a list of detected candidate transitions. In our detailed study of these gradual shot transitions, our objective has been to accurately classify the type of transitions (fade-in, fade-out, and dissolve) and to precisely locate the boundary of the transitions. This distinguishes our work from early work in scene change detection which focuses on identifying the existence of a transition rather than its precise temporal extent. We evaluate our algorithms against two other commonly used methods on a comprehensive data set, and demonstrate the improved performance due to our enhancements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present improved algorithms for cut, fade, and dissolve detection which are fundamental steps in digital video analysis. In particular, we propose a new adaptive threshold determination method that is shown to reduce artifacts created by noise and motion in scene cut detection. We also describe new two-step algorithms for fade and dissolve detection, and introduce a method for eliminating false positives from a list of detected candidate transitions. In our detailed study of these gradual shot transitions, our objective has been to accurately classify the type of transitions (fade-in, fade-out, and dissolve) and to precisely locate the boundary of the transitions. This distinguishes our work from other early work in scene change detection which tends to focus primarily on identifying the existence of a transition rather than its precise temporal extent. We evaluate our improved algorithms against two other commonly used shot detection techniques on a comprehensive data set, and demonstrate the improved performance due to our enhancements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of object recognition is of immense practical importance and potential, and the last decade has witnessed a number of breakthroughs in the state of the art. Most of the past object recognition work focuses on textured objects and local appearance descriptors extracted around salient points in an image. These methods fail in the matching of smooth, untextured objects for which salient point detection does not produce robust results. The recently proposed bag of boundaries (BoB) method is the first to directly address this problem. Since the texture of smooth objects is largely uninformative, BoB focuses on describing and matching objects based on their post-segmentation boundaries. Herein we address three major weaknesses of this work. The first of these is the uniform treatment of all boundary segments. Instead, we describe a method for detecting the locations and scales of salient boundary segments. Secondly, while the BoB method uses an image based elementary descriptor (HoGs + occupancy matrix), we propose a more compact descriptor based on the local profile of boundary normals’ directions. Lastly, we conduct a far more systematic evaluation, both of the bag of boundaries method and the method proposed here. Using a large public database, we demonstrate that our method exhibits greater robustness while at the same time achieving a major computational saving – object representation is extracted from an image in only 6% of the time needed to extract a bag of boundaries, and the storage requirement is similarly reduced to less than 8%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingertips of human hand play an important role in hand-based interaction with computers. Identification of fingertips' positions in hand images is vital for developing a human computer interaction system. This paper proposes a novel method for detecting fingertips of a hand image analyzing the concept of the geometrical structural information of fingers. The research is divided into three parts: First, hand image is segmented for detecting hand, Second, invariant features (curvature zero-crossing points) are extracted from the boundary of the hand, Third, fingertips are detected. Experimental results show that the proposed approach is promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingertips of human hand play an important role in hand-based interaction with computers. Therefore, identification of fingertips' positions on hand image is vital for developing a human computer interaction system. All most all of the research works for fingertips detection, initially isolate hand image from the background image. Most of these techniques develop color based segmentation methods because human skin color possess an exceptional characterises that can be used to isolate hand from the rest of the image quite easily. Sometimes color image segmentation becomes difficult due to illumination and background variations. To make it simple and reliable, this paper proposes a robust method for detecting fingertips of a hand image based on the combination of color segmentation and circle detection. Due to the characteristics of circularity of fingertips regions of hand boundary, any existing circle detection algorithms can be applied to detect circles at fingertips region. It is difficult to detect fingertips solely based on the circle detection method. For this reason, initially the proposed method detects all the circular regions on the image applying Circle Hough Transformation (CHT) then the fingertips are selected based on the color characteristics of the fingertips regions. Experimental results show that the proposed approach is promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.