53 resultados para Bone age

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running.

Methods
: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N = 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m[middle dot]min-1. Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia.

Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC;P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01).

Conclusion
: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Australia, benefits for antifracture therapies have been available for patients with osteoporosis and a prior fracture. No benefits were available to those with no prior fracture. We aimed to define, in women with no prior fracture, age-related thresholds of bone mineral density (BMD) associated with fracture risk equivalent to that of women with prior fracture and osteoporosis. A case-control study of women (≥50 yr) was conducted, including 291 fracture cases and 823 controls. BMD was measured at the proximal femur and posterior anterior (PA) spine. A fracture risk score (FRS) for the group with no prior fracture was calculated with discriminant analysis. The thresholds for equivalent fracture risk between those with no prior fracture and those with prior fracture were assessed using logistic regression. Increasing the FRS to +0.98 in women with no prior fracture resulted in equivalent odds of sustaining a fracture to those with prior fracture and osteoporosis. The corresponding T-score thresholds at the spine were −4.6 at 50 yr, −3.9 at 60 yr, −3.1 at 70 yr, and −2.4 at 80 yr. The femoral neck T-score thresholds were lower by 0.5 standard deviation. The high-risk individuals defined by this study should be considered for primary fracture prevention therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background

Age-related losses in bone mineral density (BMD), muscle strength, balance, and gait have been linked to an increased risk of falls, fractures and disability, but few prospective studies have compared the timing, rate and pattern of changes in each of these measures in middle-aged and older men and women. This is important so that targeted strategies can be developed to optimise specific musculoskeletal and functional performance measures in older adults. Thus, the aim of this 10-year prospective study was to: 1) characterize and compare age- and gender-specific changes in BMD, grip strength, balance and gait in adults aged 50 years and over, and 2) compare the relative rates of changes between each of these musculoskeletal and functional parameters with ageing.

Methods:
Men (n = 152) and women (n = 206) aged 50, 60, 70 and 80 years recruited for a population-based study had forearm BMD, grip strength, balance and gait velocity re-assessed after 10-years.

Results:
The annual loss in BMD was 0.5-0.7% greater in women compared to men aged 60 years and older (p < 0.05- < 0.001), but there were no gender differences in the rate of loss in grip strength, balance or gait. From the age of 50 years there was a consistent pattern of loss in grip strength, while the greatest deterioration in balance and gait occurred from 60 and 70 years onwards, respectively. Comparison of the changes between the different measures revealed that the annual loss in grip strength in men and women aged <70 years was 1-3% greater than the decline in BMD, balance and gait velocity.

Conclusion:
There were no gender differences in the timing (age) and rate (magnitude) of decline in grip strength, balance or gait in Swedish adults aged 50 years and older, but forearm BMD decreased at a greater rate in women than in men. Furthermore, there was heterogeneity in the rate of loss between the different musculoskeletal and function parameters, especially prior to the age of 70 years, with grip strength deteriorating at a greater rate than BMD, balance and gait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: It remains uncertain whether long-term participation in regular weight-bearing exercise confers an advantage to bone structure and strength in old age. The aim of this study was to investigate the relationship between lifetime sport and leisure activity participation on bone material and structural properties at the axial and appendicular skeleton in older men (>50 years).

Methods: We used dual-energy X-ray absorptiometry (DXA) to assess hip, spine and ultradistal (UD) radius areal bone mineral density (aBMD) (n=161), quantitative ultrasound (QUS) to measure heel bone quality (n=161), and quantitative computed tomography (QCT) to assess volumetric BMD, bone geometry and strength at the spine (L1–L3) and mid-femur (n=111). Current (>50+ years) and past hours of sport and leisure activity participation during adolescence (13–18 years) and adulthood (19–50 years) were assessed by questionnaire. This information was used to calculate the total time (min) spent participating in sport and leisure activities and an osteogenic index (OI) score for each participant, which provides a measure of participation in weight-bearing activities.

Results:
Regression analysis revealed that a greater lifetime (13–50+ years) and mid-adulthood (19–50 years) OI, but not total time (min), was associated with a greater mid-femur total and cortical area, cortical bone mineral content (BMC), and the polar moment of inertia (I p) and heel VOS (p ranging from <0.05 to <0.01). These results were independent of age, height (or femoral length) and weight (or muscle cross-sectional area). Adolescent OI scores were not found to be significant predictors of bone structure or strength. Furthermore, no significant relationships were detected with areal or volumetric BMD at any site. Subjects were then categorized into either a high (H) or low/non-impact (L) group during adolescence (13–18 years) and adulthood (19–50+ years) according to their OI scores during each of these periods. Three groups were subsequently formed to reflect weight-bearing impact categories during adolescence and then adulthood: LL, HL and HH. Compared to the LL group, mid-femur total and cortical area, cortical BMC and I p were 6.5–14.2% higher in the HH group. No differences were detected between the LL and HL groups.

Conclusions:
In conclusion, these findings indicate that long-term regular participation in sport and leisure activities categorized according to an osteogenic index [but not the total time (min) spent participating in all sport and leisure activities] was an important determinant of bone size, quality and strength, but not BMD, at loaded sites in older men. Furthermore, continued participation in weight-bearing exercise in early to mid-adulthood appears to be important for reducing the risk of low bone strength in old age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this 2-year randomized controlled study of 167 men >50 years of age, supplementation with calcium-vitamin D3-fortified milk providing an additional 1000 mg of calcium and 800 IU of vitamin D3 per day was effective for suppressing PTH and stopping or slowing bone loss at several clinically important skeletal sites at risk for fracture.

Introduction: Low dietary calcium and inadequate vitamin D stores have long been implicated in age-related bone loss and osteoporosis. The aim of this study was to assess the effects of calcium and vitamin D3 fortified milk on BMD in community living men >50 years of age.

Materials and Methods: This was a 2-year randomized controlled study in which 167 men (mean age ± SD, 61.9 ± 7.7 years) were assigned to receive either 400 ml/day of reduced fat (1%) ultra-high temperature (UHT) milk containing 1000 mg of calcium plus 800 IU of vitamin D3 or to a control group receiving no additional milk. Primary endpoints were changes in BMD, serum 25(OH)D, and PTH.

Results:
One hundred forty-nine men completed the study. Baseline characteristics between the groups were not different; mean dietary calcium and serum 25(OH)D levels were 941 ± 387 mg/day and 77 ± 23 nM, respectively. After 2 years, the mean percent change in BMD was 0.9-1.6% less in the milk supplementation compared with control group at the femoral neck, total hip, and ultradistal radius (range, p < 0.08 to p < 0.001 after adjusting for covariates). There was a greater increase in lumbar spine BMD in the milk supplementation group after 12 and 18 months (0.8-1.0%, p ≤ 0.05), but the between-group difference was not significant after 2 years (0.7%; 95% CI, −0.3, 1.7). Serum 25(OH)D increased and PTH decreased in the milk supplementation relative to control group after the first year (31% and −18%, respectively; both p < 0.001), and these differences remained after 2 years. Body weight remained unchanged in both groups at the completion of the study.

Conclusions: Supplementing the diet of men >50 years of age with reduced-fat calcium- and vitamin D3-enriched milk may represent a simple, nutritionally sound and cost-effective strategy to reduce age-related bone loss at several skeletal sites at risk for fracture in the elderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term effects of calcium and vitamin D supplementation on bone material and structural properties in older men are not known. The aim of this study was to examine the effects of high calcium (1000 mg/day)- and vitamin-D3 (800 IU/day)-fortified milk on cortical and trabecular volumetric BMD (vBMD) and bone geometry at the axial and appendicular skeleton in men aged over 50 years. One hundred and eleven men who were part of a larger 2-year randomized controlled trial had QCT scans of the mid-femur and lumbar spine (L1–L3) to assess vBMD, bone geometry and indices of bone strength [polar moment of inertia (Ipolar)]. After 2 years, there were no significant differences between the milk supplementation and control group for the change in any mid-femur or L1–L3 bone parameters for all men aged over 50 years. However, the mid-femur skeletal responses to the fortified milk varied according to age, with a split of ≤62 versus >62 years being the most significant for discriminating the changes between the two groups. Subsequent analysis revealed that, in the older men (>62 years), the expansion in mid-femur medullary area was 2.8% (P < 0.01) less in the milk supplementation compared to control group, which helped to preserve cortical area in the milk supplementation group (between group difference 1.1%, P < 0.01). Similarly, for mid-femur cortical vBMD and Ipolar, the net loss was 2.3 and 2.8% less in the milk supplementation compared to control group (P < 0.01 and <0.001, respectively). In conclusion, calcium–vitamin-D3-fortified milk may represent an effective strategy to maintain bone strength by preventing endocortical bone loss and slowing the loss in cortical vBMD in elderly men.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The long-term effects of pregnancy and lactation on measures of bone mineral in women remain unclear.

OBJECTIVE: We studied whether pregnancy or lactation has deleterious long-term effects on bone mineral in healthy women.

DESIGN: We measured bone mineral density (BMD; g/cm(2)) in women aged > or = 18 y. Analyses were performed on 3 data sets: study 1, 83 female twin pairs (21 monozygous and 62 dizygous) aged (x +/- SD) 42.2 +/- 15.5 y who were discordant for ever having been pregnant beyond 20 wk; study 2, 498 twin pairs aged 42.3 +/- 15.0 y; and study 3, 1354 individual twins, their siblings, and family members.

RESULTS: In study 1, there were no significant within-pair differences in unadjusted BMD or BMD adjusted for age, height, and fat mass at the lumbar spine or total-hip or in total-body bone mineral content (BMC; kg) (paired t tests). In study 2, there was no significant within-pair difference in measures of bone mineral or body composition related to the within-pair difference in number of pregnancies. In study 3, subjects with 1 or 2 (n = 455) and > or = 3 pregnancies (n = 473) had higher adjusted lumbar spine BMD (2.9% and 3.8%, respectively; P = 0.001) and total-body BMC (2.2% and 3.1%; P < 0.001) than did nulliparous women (n = 426). Parous women who breast-fed had higher adjusted total-body BMC (2.6%; P = 0.005), total-hip BMD (3.2%; P = 0.04), and lower fat mass (10.9%; P = 0.01) than did parous non-breast-feeders.

CONCLUSION:
We found no long-term detrimental effect of pregnancy or breast-feeding on bone mineral measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The age and developmental stage at which calcium supplementation produces the greatest bone effects remain controversial. We tested the hypothesis that calcium supplementation may improve bone accrual in premenarcheal females. Fifty-one pairs of premenarcheal female twins (27 monozygotic and 24 dizygotic; mean ± SD age, 10.3 ± 1.5 yr) participated in a randomized, single-blind, placebo-controlled trial with one twin of each pair receiving a 1200-mg calcium carbonate (Caltrate) supplement. Areal bone mineral density (aBMD) was measured at baseline and 6, 12, 18 and 24 months. There were no within-pair differences in height, weight, or calcium intake at baseline. Calcium supplementation was associated (P < 0.05) with increased aBMD compared with placebo, adjusted for age, height, and weight at the following time points from baseline: total hip, 6 months (1.9%), 12 months (1.6%), and 18 months (2.4%); lumbar spine, 12 months (1.0%); femoral neck, 6 months (1.9%). Adjusted total body bone mineral content was higher in the calcium group at 6 months (2.0%), 12 months (2.5%), 18 months (4.6%), and 24 months (3.7%), respectively (all P < 0.001). Calcium supplementation was effective in increasing aBMD at regional sites over the first 12–18 months, but these gains were not maintained to 24 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Obesity is thought to be a protective factor for bones in adults but not in children based on the evidence of the greater incidence of forearm fractures in obese children. Our objective was to investigate the effect of adiposity on bone strength in relation to the mechanical challenge placed onto the forearm bones in case of a fall.

Methods: Cross sectional areas (CSA) were obtained at the mid- and distal radius by peripheral quantitative computed tomography in 486 children (241 boys), mean age 8.3 years (range 6.9–9.7), participating in the LOOK Project. The following parameters were measured: bone mass and bone CSA (both sites), and muscle and fat CSA (mid-forearm only). Bone strength indices combining bone size and total volumetric density were calculated at each site.

Results/Discussion: Overweight children (BMI > percentile equivalent to 25 kg/m2 in adults) have higher bone parameters than normal-weight peers (Z-scores +0.6 to +0.9SD, p < 0.0001). These differences disappear after adjustment for muscle CSA. Adiposity (fat CSA/muscle CSA) was negatively correlated with bone mass, size and strength at the distal radius only (r = −0.1, p < 0.05). After adjustment for body weight (estimate of the load during a fall), the negative correlations were stronger and observed at both the mid- and distal radius (r = −0.37 to −0.55, p < 0.0001).

Conclusion. Overweight children have stronger bones due to greater muscle size. However, children with high fat mass relative to muscle mass (increased adiposity) have poorer bone strength, independent of weight, which may contribute to the increased risk of fracture in obese children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : Female gymnasts frequently present with overt signs of hypoestrogenism, such as late menarche or menstrual dysfunction. The objective was to investigate the impact of history of amenorrhoea on the exercise-induced skeletal benefits in bone geometry and volumetric density in retired elite gymnasts.
Subjects and methods

24 retired artistic gymnasts, aged 17–36 years, who had been training for at least 15 h/week at the peak of their career and had been retired for 3–18 years were recruited. They had not been engaged in more than 2 h/week of regular physical activity since retirement. Former gymnasts who reported history of amenorrhoea (‘AME’, n = 12: either primary or secondary amenorrhoea) were compared with former gymnasts (‘NO-AME’, n = 12) and controls (‘C’, n = 26) who did not report history of amenorrhoea. Bone mineral content (BMC), total bone area (ToA) and total volumetric density (ToD) were measured by pQCT at the radius and tibia (4% and 66%). Trabecular volumetric density (TrD) and bone strength index (BSI) were measured at the 4% sites. Cortical area (CoA), cortical thickness (CoTh), medullary area (MedA), cortical volumetric density (CoD), stress–strain index (SSI) and muscle and fat area were measured at the 66% sites. Spinal BMC, areal BMD and bone mineral apparent density (BMAD) were measured by DXA.
Results

Menarcheal age was delayed in AME when compared to NO-AME (16.4 ± 0.5 years vs. 13.3 ± 0.4 years, p < 0.001). No differences were detected between AME and C for height-adjusted spinal BMC, aBMD and BMAD, TrD and BSI at the distal radius and tibia, CoA at the proximal radius, whereas these parameters were greater in NO-AME than C (p < 0.05–0.005). AME had lower TrD and BSI at the distal radius, and lower spinal BMAD than NO-AME (p < 0.05) but they had greater ToA at the distal radius (p < 0.05).
Conclusion

Greater spinal BMC, aBMD and BMAD as well as trabecular volumetric density and bone strength in the peripheral skeleton were found in former gymnasts without a history of menstrual dysfunction but not in those who reported either primary or secondary amenorrhoea. History of amenorrhoea may have compromised some of the skeletal benefits associated with high-impact gymnastics training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between muscle strength and bone mineral density illustrates the positive effect of mechanical loading on bone. But local and systemic factors may affect both muscle and bone tissues. This study investigated the effects of long-term tennis playing on the relationship between lean tissue mass and bone mineral content in the forearms, taking the body dimensions into account. Fifty-two tennis players (age 24.2 +/- 5.8 yrs, 16.2 +/- 6.1 yrs of practice) were recruited. Lean tissue mass (LTM), bone area, bone mineral content (BMC), and bone mineral density were measured at the forearms from a DXA whole-body scan. Grip strength was assessed with a dynamometer. A marked side-to-side difference (p < 0.0001) was found in favor of the dominant forearm in all parameters. Bone area and BMC correlated with grip strength on both sides (r = 0.81 - 0.84, p < 0.0001). The correlations were still significant after adjusting for whole-body BMC body height, or forearm length. This result reinforced the putative role of the muscles in the mechanical loading on bones. In addition, forearm BMC adjusted to LTM or grip strength was higher on the dominant side, suggesting that tennis playing exerts a direct effect on bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benefit of impact-loading activity for bone strength depends on whether the additional bone mineral content (BMC) accrued at loaded sites is due to an increased bone size, volumetric bone mineral density (vBMD) or both. Using magnetic resonance imaging (MRI) and dual energy X-ray absorptiometry (DXA), the aim of this study was to characterize the geometric changes of the dominant radius in response to long-term tennis playing and to assess the influence of muscle forces on bone tissue by investigating the muscle–bone relationship. Twenty tennis players (10 men and 10 women, mean age: 23.1 ± 4.7 years, with 14.3 ± 3.4 years of playing) were recruited. The total bone volume, cortical volume, sub-cortical volume and muscle volume were measured at both distal radii by MRI. BMC was assessed by DXA and was divided by the total bone volume to derive vBMD. Grip strength was evaluated with a dynamometer. Significant side-to-side differences (P < 0.0001) were found in muscle volume (+9.7%), grip strength (+13.3%), BMC (+13.5%), total bone volume (+10.3%) and sub-cortical volume (+20.6%), but not in cortical volume (+2.6%, ns). The asymmetry in total bone volume explained 75% of the variance in BMC asymmetry (P < 0.0001). vBMD was slightly higher on the dominant side (+3.3%, P < 0.05). Grip strength and muscle volume correlated with all bone variables (except vBMD) on both sides (r = 0.48–0.86, P < 0.05–0.0001) but the asymmetries in muscle parameters did not correlate with those in bone parameters. After adjustment for muscle volume or grip strength, BMC was still greater on the dominant side. This study showed that the greater BMC induced by long-term tennis playing at the dominant radius was associated to a marked increase in bone size and a slight improvement in volumetric BMD, thereby improving bone strength. In addition to the muscle contractions, other mechanical stimuli seemed to exert a direct effect on bone tissue, contributing to the specific bone response to tennis playing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 ± 1.4 years old) and 47 adult tennis players (22.3 ± 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.