23 resultados para Body Water

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the daily energy expenditure of free-living red foxes Vulpes vulpes occupying a temperate region of New South Wales, Australia. Field metabolic rate (FMR) and body water turnover were estimated using doubly labelled water. In autumn, male body mass ranged from 5 to 6.1 kg (mean 5.6 kg) and their FMRs averaged 2328 kJ/day. Female body mass in autumn ranged from 4.9 to 6.6 kg (mean 5.4 kg) and their FMRs averaged 1681 kJ/day. Body water influx for males and females was 314 and 251 mL/day, respectively. Body composition of each fox was analysed after the field measurements and revealed a significant correlation between body water content, as estimated from tritiated water space, and body lipids (r2 = 0.72). This supports the use of body water determination as a potentially non-destructive method to gauge body condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
To examine the effects of four commonly used recovery treatments applied between two bouts of intense endurance cycling on the performance of the second bout in normothermia (~21 °C).

Methods
Nine trained men completed two submaximal exhaustive cycling bouts (Ex1 and Ex2: 5 min at ~50 % V˙O2 peak, followed by 5 min at ~60 % V˙O2 peak and then ~80 % V˙O2 peak to failure) separated by 30 min of (a) cold water immersion at 15 °C (C15), (b) contrast water therapy alternating 2.5 min at 8 °C and 2.5 min at 40 °C (CT), (c) thermoneutral water immersion at 34 °C (T34) and (d) cycling at ~40 % V˙O2 peak (AR).

Results
Exercise performance, cardiovascular and metabolic responses during Ex1 were similar among all trials. However, time to failure (~80 % V˙O2 peak bout) during Ex2 was significantly (P < 0.05) longer in C15 (18.0 ± 1.6) than in CT (14.5 ± 1.5), T34 (12.4 ± 1.4) and AR (10.6 ± 1.0); and it was also longer (P < 0.05) in CT than AR. Core temperature and heart rate were significantly (P < 0.05) lower during the initial ~15 min of Ex2 during C15 compared with all other conditions but they reached similar levels at the end of Ex2.

Conclusions
A 30 min period of C15 was more beneficial in maintaining intense submaximal cycling performance than CT, T34 and AR; and CT was also more beneficial than T34 and AR. These effects were not mediated by the effect of water immersion per se, but by the continuous (C15) or intermittent (CT) temperature stimulus (cold) applied throughout the recovery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis deals with two electrical methods designed to enable rapid, safe and noninvasive measurement of body composition, both for clinical and community use. The first section provides a review of the literature related to measurement of body composition in humans and outlines the approach of the research project. The second section deals with established methods of determining body composition, the two most important being hydrostatic densitometry and deuterium oxide dilution. In this part of the report, a novel method for measuring lung volume by hydrogen dilution at the time of underwater weighing is described. The main findings of the thesis are contained in the third section which deals with the assessment of body opposition by electrical means. There are two components to this part of the study. The first involved the testing of a commercially available bioelectric impedance analyser (BIA) which measures impedance to a flow of current through the body. Studies on the reproducibility and reliability of measurements were performed. Results showed the importance of correct electrode placement and revealed that subjects can consume a light meal and a drink before being measured with the BIA without adversely affecting impedance readings. Results suggested, however, that subjects empty their bladders before measurements are made. Strong correlations were found between height 2/ resistance and measurements of total body water (r = 0.839) and fat-free weight derived from densitometry (r = 0.821), Moderate correlations (r = 0.6 to 0.7) were also found when height /resistance was related to fat-free weight derived from anthropometric measurements. The second and major consonant of the third section deals with the development of a method based on the absorption of energy from a weak electromagnetic field established in a capacitor or chamber large enough to accommodate an adult human subject. The method involves measurement of the effect of the body on the electromagnetic field, and is based on differential absorption of energy by body fat and fat-free tissues. Regression equations were developed for predicting the weight of fat and fat-free tissue in the body from measurement of electromagnetic field effects in a test capacitor and in a resonating chamber. The test capacitor comprised a large aluminum cylinder with a copper rod as a central conductor. The following equation was derived for the relationship of fat-free weight (FEW) based on body density, with measurements of change in resonant frequency (ΔfR), height (H) and weight (W) : FFW = -4.39 + 0.690 W + 19.9 H + 37.6 ΔfR In a study of 17 subjects, a value of 0.891 was found for R2, and S.E.E. was 1.63. The resonating chamber consisted of a large enclosed aluminium cylinder with a copper rod as a central conductor. The following equation was derived for the relationship of fat weight (FW) based on the mean of estimates from body density and total body water, with measurements of change in signal attenuation (ΔA), change in resonant frequency (ΔfR), and height (H) and weight (W) : FW = 73.48 + 0.291 (W/√(ΔA) - 49.2 H - 0.53 ΔfR In a study of 27 subjects, a value of 0.956 was found for R2, and S.E.E. was 1.97. In these equations, variables were measured in the following units : FEW, FW and W (kg), ΔfR (MHz) and H (m).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies examining recruitment processes for soft-sediment macroinvertebrate fauna in intermittent estuaries are rare and most studies of active habitat selection have been tested in the laboratory rather than the field. The present field study examined whether recruitment of the infaunal bivalve Soletellina alba was influenced by water depth and sediment particle size in the intermittent Hopkins River estuary, southern Australia. The number of recruits in sediment trays differed between water depths, but active habitat selection was not evident across treatments of varying sediment particle size. The use of sediments with varying particle sizes also provided an opportunity to identify potential discontinuities in body-size distributions of recruits associated with varying habitat architecture. The length (mm) of recruits was converted to the same scale used to express sediment particle size (i.e. phi units: phi = − log2 of sediment particle size). The size of recruits differed across water depths, but did not differ across treatments with fine (phi = 3) versus coarse (phi = 1) sediment, and no relationships were apparent between bivalve size and sediments consisting of varying particle size. These patterns of recruitment do not correspond with the distribution of adult S. alba within the Hopkins River estuary. Previous sampling has shown that abundances of juvenile and adult S. alba are variable across time, site and water depth, but are often greater at the deeper water depth (1.05 m below the Australian Height Datum). However, recruitment during the present study was greatest at the shallower water depth (0.05 m below AHD), and the apparent absence of active habitat selection suggests that the distribution of adults is unlikely to be attributable to differences in recruitment associated with sediments of varying particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Estimating changes in weight from changes in energy balance is important for predicting the effect of obesity prevention interventions. OBJECTIVE: The objective was to develop and validate an equation for predicting the mean weight of a population of children in response to a change in total energy intake (TEI) or total energy expenditure (TEE). DESIGN: In 963 children with a mean (+/-SD) age of 8.1 +/- 2.8 y (range: 4-18 y) and weight of 31.5 +/- 17.6 kg, TEE was measured by using doubly labeled water. Log weight (dependent variable) and log TEE (independent variable) were analyzed in a linear regression model with height, age, and sex as covariates. It was assumed that points of dynamic balance, called "settling points," occur for populations wherein energy is in balance (TEE = TEI), weight is stable (ignoring growth), and energy flux (EnFlux) equals TEE. RESULTS: TEE (or EnFlux) explained 74% of the variance in weight. The unstandardized regression coefficient was 0.45 (95% CI: 0.38, 0.51; R(2) = 0.86) after including covariates. Conversion into proportional changes (time(1) to time(2)) gave the equation (weight(2)/weight(1)) = (EnFlux(2)/EnFlux(1))(0.45). In 3 longitudinal studies (n = 212; mean follow-up of 3.4 y), the equation predicted the mean follow-up measured weight to within 0.5%. CONCLUSIONS: The relation of EnFlux with weight was positive, which implied that a high TEI (rather than low physical activity and low TEE) was the main determinant of high body weight. Two populations of children with a 10% difference in mean EnFlux would have a 4.5% difference in mean weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro studies have demonstrated that angiotensin II (ANG II) induces adipocyte hyperplasia and hypertrophy. The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibition on body weight, adiposity and blood pressure in Sprague–Dawley rats. From birth half of the animals (n = 15) were given water to drink, while the remainder were administered perindopril in their drinking water (2 mg/kg/day). Food intake, water intake and body weight were measured weekly. Blood pressure was measured by tail cuff plethysmography at 11-weeks. Body fat content and distribution were assessed using dual energy X-ray absorptiometry and Magnetic Resonance Imaging at 12 weeks. Animals administered with perindopril had a body fat proportion that was half that of controls. This was consistent with, but disproportionately greater than the observed differences in food intake and body weight. Perindopril treatment completely removed hypertension. We conclude that the chronic inhibition of ANG II synthesis from birth specifically reduces the development of adiposity in the rat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fasting metabolism of 71- to 235-d-old subantarctic fur seal (Arctocephalus tropicalis) pups from Amsterdam Island, southern Indian Ocean, was investigated during the long foraging trips of their mothers. Body lipid reserves were proportionally greater in female than male pups and higher in postmoult (37%) than premoult (10%) animals. The mass-specific rate of mass loss did not differ between the sexes but was lower than observed in other species. Daily mass loss was estimated to 56% fat, 10% protein, and 34% water. The rate of protein catabolism (15 g d−1) was negatively related to the size of initial lipid stores and accounted for 9% (±1%) of total energy expenditure. However, body composition changes during the fast were not equal between the sexes, with females relying more on protein catabolism than males (11% and 5% of total energy expenditure, respectively). Energy expenditure (270 kJ kg−1 d−1) and metabolic water production (11.5 mL kg−1 d−1) rates are the lowest reported for an otariid species. These results suggest that subantarctic fur seal pups greatly reduce activity levels to lower energy expenditure in addition to adopting protein-sparing metabolic pathways in order to survive the extreme fasts they must endure on Amsterdam Island.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: There is emerging evidence that angiotensin stimulates adipocyte differentiation and lipogenesis. This study tested the hypothesis that inhibition of angiotensin II by treatment with an angiotensin-converting enzyme inhibitor, perindopril, would reduce fat mass in rats. Design: After a 12-day baseline, rats were divided into two groups: one was untreated and the other received perindopril (1.2 mg kg−1 per day) in drinking water for 26 days.Subjects: In total, 16 male Sprague–Dawley rats aged 10 weeks at the start of the study. Measurements: Plasma leptin was measured in samples collected at baseline, half-way through and at the end of treatment. Body weight, food and water intake were measured daily throughout the experiment. Body fat mass, bone and lean mass were determined by dual energy X-ray absorptiometry (DEXA) at the end of the treatment period. Results: Daily food intake was the same in both groups throughout the study. By the end of treatment, animals receiving perindopril showed a modest reduction in weight gain relative to the untreated animals (62.4±5.0 g vs 73.0±4.0 g; P<0.05). DEXA analysis showed that body composition was greatly altered and the perindopril-treated group had 26% less body fat mass than the untreated group (61.0±5.2 g vs 44.4±4.2 g; P<0.01). The reduction in body fat mass was correlated with reductions in the weight of both the epididymal and retroperitoneal fat pads (P<0.001). Similarly, plasma leptin was reduced by perindopril treatment (4.64±0.56 ng ml−1) compared to the untreated group (8.27±1.03 ng ml−1; P<0.001). In contrast, there were no differences in lean or bone mass between the two groups.Conclusion: Oral treatment with perindopril selectively reduced body fat mass without influencing daily food intake. In contrast, there were no differences in lean or bone mass between the two groups

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the effect of ambient temperatures between 25 and 43°C on the rate of evaporative water loss (EWL) in eight adult Litoria xanthomera (average body mass = 7.3 ± 0.6 g). Frogs were placed in a cylindrical chamber that permitted them to fully conceal their ventral surfaces using a water-conserving posture. Their EWL was 7.1 ± 0.7 mg g–1 h–1 at 25°C and reached 28.0 ± 2.5 mg g–1 h–1 at 43°C. Agar replicas of the frogs were used to evaluate boundary-layer resistances associated with the EWL measurements and, thus, to permit evaluation of cutaneous resistance to vapour diffusion (rc) in live frogs. The rc of L. xanthomera was stable over the temperature range of 25–35°C, averaging about 28 s cm–1, and then declined stepwise with ambient temperatures above 37°C. The highest rc recorded for each individual over the range of temperatures studied averaged 32.0 ± 1.2 s cm–1. The thermolabile nature of rc demonstrates a well developed thermoregulatory control of EWL in this species, a trait very similar in pattern and extent to that previously measured in the closely related Litoria chloris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-α, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-β, and PPAR-γ) and BT (C/EBP-β), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-γ genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes. Am J Physiol Regul Integr Comp Physiol 297: R1582–R1592, 2009. First published September 23, 2009; doi:10.1152/ajpregu.90857.2008.— Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 ± 3.3 days) were investigated at 7 mo of age. Within 4–6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate  (5.9 ± 0.1 ml O2 ·kg-1·day-1) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 ± 10 kJ·kg-1 ·day-1) and water influx (7.9 ± 0.9 ml·kg-1 ·day-1) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as β-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The renin–angiotensin system (RAS) is functional within adipose tissue and angiotensin II, the active component of RAS, has been implicated in adipose tissue hypertrophy and insulin resistance. In this study, captopril, an angiotensin converting enzyme (ACE) inhibitor that prevents angiotensin II formation, was used to study the development of diet-induced obesity and insulin resistance in obesity prone C57BL/6J mice. The mice were fed a high fat diet (w/w 21% fat) and allowed access to either water or water with captopril added (0.2 mg/ml). Body weight was recorded weekly and water and food intake daily. Glucose tolerance was determined after 11–12 weeks. On completion of the study (after 16 weeks of treatment), the mice were killed and kidney, liver, epididymal fat and extensor digitorum longus muscle (EDL) were weighed. Blood samples were collected and plasma analysed for metabolites and hormones. Captopril treatment decreased body weight in the first 2 weeks of treatment. Food intake of captopril-treated mice was similar to control mice prior to weight loss and was decreased after weight loss. Glucose tolerance was improved in captopril-treated mice. Captopril-treated mice had less epididymal fat than control mice. Relative to body weight, captopril-treated mice had increased EDL weight. Relative to control mice, mice administered captopril had a higher plasma concentration of adiponectin and lower concentrations of leptin and non-esterified fatty acids (NEFA). The results indicate that captopril both induced weight loss and improved insulin sensitivity. Thus, captopril may eventually be used for the treatment of obesity and Type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.