4 resultados para Blue Hill Bay

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the historiography of the Adelaide Hills and offers a new perspective as to the reasons behind hill-station residence constructions that crafted this distinct cultural and designed landscape. Australian hill-station communities, and their major architectural edifices, were extensively established in two periods: the 1870s-1890s and the 1920s-1930s. Sites in the Darling Ranges, Adelaide Hills, Macedon and Dandenong Ranges, Blue Mountains and the Tamborine Mountains were favoured summer retreats for both the new and established wealthy families, who erected grand residences that have come to be celebrated in recent heritage assessments, and architectural and social histories of these environments. The majority of these studies and discourses have echoed an agenda that celebrates the architectural significance and personal associations of these structures, and thereupon have made a range of assumptions about the societal rationale for their establishment, construction and associated landscape plantings.

Taking examples from the Adelaide Hills, this paper argues that both architectural and social historians have ‘mistakenly’ concluded that the rationale behind these hill-station residences was based primarily on the provision of a ‘pleasant’ summer that echo the British Raj hill-stations. Further, it is argued that this conclusion constitutes a myth, or fabulation, about South Australian (SA) design, heritage and social histories, as many of these owners consciously sought out and selected hill-station allotments on the basis of their horticultural properties and possibilities, and that house-siting and construction were actually subservient to these imperatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seagrass meadows are among the most efficient and long-term carbon sinks on earth, but disturbances could threaten this capacity, so understanding the impacts of disturbance on carbon stored within seagrass meadows—‘blue carbon’—is of prime importance. To date, there have been no published studies on the impacts of seagrass loss on ‘blue carbon’ stocks. We experimentally created several kinds of small-scale disturbances, representative of common grazer and boating impacts, within seagrass (Zostera nigracaulis) meadows in Port Phillip Bay (Australia) and measured the impacts on sediment organic carbon stocks (‘Corg’, and other geochemical variables—%N, δ13C, δ15N). Disturbance had no detectable effect on Corg levels within seagrass sediments, even for high-intensity disturbance treatments, which remained bare (i.e. no seagrass recovery) for 2 years after the disturbance. These findings challenge the widely held assumption that disturbance and concomitant loss of seagrass habitat cause release of carbon, at least for small-scale disturbances. We suggest that larger (e.g. meadow scale) disturbances may be required to trigger losses of ‘blue carbon’ from seagrass meadows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macroalgal communities in Australia and around the world store vast quantities of carbon in their living biomass, but their prevalence of growing on hard substrata means that they have limited capacity to act as long-term carbon sinks. Unlike other coastal blue carbon habitats such as seagrasses, saltmarshes and mangroves, they do not develop their own organic-rich sediments, but may instead act as a rich carbon source and make significant contributions in the form of detritus to sedimentary habitats by acting as a “carbon donor” to “receiver sites” where organic material accumulates. The potential for storage of this donated carbon however, is dependent on the decay rate during transport and the burial efficiency at receiver sites. To better understand the potential contribution of macroalgal communities to coastal blue carbon budgets, a comprehensive literature search was conducted using key words, including carbon sequestration, macroalgal distribution, abundance and productivity to provide an estimation of the total amount of carbon stored in temperate Australian macroalgae. Our most conservative calculations estimate 109.9 Tg C is stored in living macroalgal biomass of temperate Australia, using a coastal area covering 249,697 km2. Estimates derived for tropical and subtropical regions contributed an additional 23.2 Tg C. By extending the search to include global studies we provide a broader context and rationale for the study, contributing to the global aspects of the review. In addition, we discuss the potential role of calcium carbonate-containing macroalgae, consider the dynamic nature of macroalgal populations in the context of climate change, and identify the knowledge gaps that once addressed will enable robust quantification of macroalgae in marine biogeochemical cycling of carbon. We conclude that macroalgal communities have the potential to make ecologically meaningful contributions toward global blue carbon sequestration, as donors, but given that the fate of detached macroalgal biomass remains unclear, further research is needed to quantify this contribution.