19 resultados para Birch Creek

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of various forms of nitrogen and phosphorus in the main stream and selected tributaries of Pirron Yallock Creek, southwestern Victoria were examined over a two-year period. Exceedingly high levels of both nutrients were found within a particular tributary, while generally high nutrient levels were observed throughout the catchment. The speciation results indicated that dairy effluent was the primary source of nutrients to Pirron Yallock Creek. A palaeolimnological study was undertaken to determine the impact of European settlement upon waterway nutrient concentrations within the region. The palaeolimnological study focused primarily on the diatom flora preserved within the sediments of nearby Lakes Corangamite and Bullen Merri. Lack of preservation of diatoms within the sediments of Lake Corangamite resulted in no water quality inferences for this lake. The preserved diatoms within Lake Bullen Merri suggested an increase in trophic status of this lake during the last 500 years. While a change in the diatom flora of Lake Bullen Merri was evident, it was not possible to differentiate the impact of European settlement upon nutrient status of this waterway from long-term trophic status change. In light of the particularly high nutrient concentrations observed in Pirron Yallock Creek, improved nutrient management strategies are proposed for the catchment. These strategies, which consider current nutrient management activities, are predominantly focussed on the dairy industry, which occupies the majority of the catchment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the palaeoclimatic significance of a fossil plant and insect record from Yarra Creek, on King Island, between Tasmania and the Australian mainland. The record dates, based upon a thermoluminescence chronology and other evidence, to Marine Isotope Stage 5 (MIS 5); the exact timing is impossible to ascertain given the resolution of the thermoluminescence results and the presence of an unconformity in the dated section. The presence of a cool-temperate rainforest flora, outside its modern range, and other independent evidence, suggest the sequence may represent the last interglacial (MIS 5e) rather than a later MIS 5 substage. Using coexistence methods that compare modern climatic ranges of the taxa in the assemblage we reconstruct independent beetle and plant based annual and seasonal temperate and precipitation parameters. The results imply the assemblage was deposited under a wetter summer climate and suggest conditions of enhanced temperature seasonality. It is probable that enhanced temperature seasonality is a methodological artefact reflecting the rarity of extremely equable climates (like King Island) in modern climate space. This would indicate a limitation of most methods of palaeoclimatic reconstruction that rely on modern datasets – it is only possible to reconstruct past climates as being within the range of values in that currently exist in modern climate space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgound Birch pollen allergens have been implicated as asthma triggers; however, pollen grains are too large to reach the lower airways where asthmatic reactions occur. Respirable-sized particles containing birch pollen allergens have been detected in air filters, especially after rainfall but the source of these particles has remained speculative.

Objective To determine the processes by which birch pollen allergens become airborne particles of respirable size with the potential to contribute to airways inflammation.

Methods Branches with attached male catkins were harvested and placed in a controlled emission chamber. Filtered dry air was passed through the chamber until the anthers opened, then they were humidified for 5 h and air-dried again. Flowers were disturbed by wind generated from a small electric fan. Released particles were counted, measured and collected for immuno-labelling and high-resolution microscopy.

Results Birch pollen remains on the dehisced anther and can rupture in high humidity and moisture. Fresh pollen takes as long as 3 h to rupture in water. Drying winds released an aerosol of particles from catkins. These were fragments of pollen cytoplasm that ranged in size from 30 nm to 4 μm and contained Bet v 1 allergens.

Conclusion When highly allergenic birch trees are flowering and exposed to moisture followed by drying winds they can produce particulate aerosols containing pollen allergens. These particles are small enough to deposit in the peripheral airways and have the potential to induce an inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Birch-pollen allergens are an important cause of early spring hay fever and allergic asthma. Recently, we reported a mechanism for the release of respirable allergenic particles from birch pollen containing the major allergen Bet v 1. In this study, we aimed to assess the immunologic significance of the released Bet v 1-containing starch granules in the environment.

Methods: A two-site monoclonal antibody-based assay (ELISA) was employed to quantitate Bet v 1 in high-volume air sampler filter extracts, and immunogold-labelling was used on sections of these extracts to localize Bet v 1. Immunoblot analyses were performed with pooled sera from patients sensitive to birch pollen.

Results: Atmospheric starch granules contained Bet v 1, and the concentration increased upon light rainfall. Sera from patients allergic to birch allergens recognized extracts from isolated starch granules.

Conclusions: The clinical implications of these findings are that starch granules released from birch pollen are potentially able to trigger allergic asthmatic reactions to Bet v 1, since the allergen occurs in respirable particles. Thus, clinicians can advise asthma patients to remain indoors on days of light rainfall during the birch-pollen season to avoid high levels of allergen exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergenic proteins present in pollen grains, when inhaled, interact with the airways to cause an attack of asthma in susceptible humans. In one system, grass pollen grains rupture osmotically in rainfall, releasing allergen-containing inhalable particles into the atmosphere. In contrast, birch tree pollen grains do not rupture under these conditions, yet the major allergen, Bet v 1, has been detected in the atmosphere in inhalable particles of unknown origin. It is possible that Bet v 1 may diffuse from intact settled pollen grains and the allergenic material may again become airborne, interacting with settled fine particles from other sources prior to resuspension. This study investigates the mechanism for the release of birch pollen allergen-containing inhalable particles from pollen grains. We propose the hypothesis that (1) airborne birch pollen grains settle on nearby leaf surfaces; (2) then, following light rainfall, the grains germinate and, (3) later, pollen tubes burst, releasing inhalable particles carrying Bet v 1 into the atmospheric aerosol.   We used microscopic analyses of pollen behaviour following anther opening, a Burkard volumetric trap for pollen counts and a high volume air sampler with a two-stage cascade impactor for quantitative immunochemical analyses of Bet v 1. On dry days of high birch pollen count (48 grains/m3, 1.5 ng/m3 of Bet v 1), we found that the surfaces of birch leaves became coated with pollen. This ”pollen rain” is a source of secondary emission of allergens into the atmosphere. We observed that following light rainfall (<1 mm per day), about 80% of the birch pollen grains germinated, producing pollen tubes, especially in the sticky surface secretions of leaf glands. These pollen tubes may grow up to 300 μm in length prior to rupturing, each releasing about 400 starch granules coated with allergen molecules that may, after drying, be dispersed into the aerosol. On these days following light rainfall, the highest atmospheric levels of Bet v 1 (1.18 ng/m3) are associated with inhalable particles. Following heavy rainfall, both pollen and inhalable particles are washed from the atmosphere. Immunoprinting studies show that Bet v 1 is associated with starch granules rather than the smaller orbicules. Bet v 1 is present in the atmosphere in large particles, i.e. in particular pollen grains and in inhalable particles, i.e. in particular starch granules.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: