7 resultados para Biological soil crusts formation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is preliminary to ongoing investigations of soil crusts and associated invertebrates in north-west Victoria, focusing on the Little Desert National Park. Ninety quadrats from nine sites were sampled. Eighteen bryophyte species (nine mosses, nine liverworts) were identified within the quadrats. All invertebrates were from the Phylum Arthropoda. Overall abundance and diversity of invertebrates was low. While sampling in the drier months is valuable for observing the dynamics of soil crusts in this region, a more comprehensive assessment of species diversity is gained by sampling
during wetter periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is paucity of data regarding hydrocarbon exposure of tropical fish species inhabiting the waters near oil and gas platforms on the Northwest Shelf of Australia. A comprehensive field study assessed the exposure and potential effects associated with the produced water (PW) plume from the Harriet A production platform on the northwest shelf in a local reef species, Stripey seaperch (Lutjanus carponotatus). This field study was a continuation of an earlier pilot study which concluded that there were “warning signs” of potential biological effects on fish populations exposed to PW. A 10-day field caging study was conducted deploying 15 individual fish into 6 separate steel cages set 1-m subsurface at 3 stations in a concentration gradient moving away from the platform. A battery of biomarkers were evaluated including hepatosomatic index (HSI), total cytochrome P450, bile metabolites, CYP1A-, CYP2K- and CYP2M-like proteins, cholinesterase (ChE) activity, and histopathology of liver and gill tissues. Water column and PW effluent samples was also collected. Results confirmed that PAH metabolites in bile, CYP1A-, CYP2K-, and CYP2M-like proteins and liver histopathology provided evidence of significant exposure and effects after 10 days at the near-field site (~200 m off the Harriet A platform). Hepatosomatic index, total cytochrome P450, and ChE did not provide site-specific differences by day 10 of exposure to PW. CYP proteins were shown by principal component analysis (PCA) to be the best diagnostic tool for determining exposure and associated biological effects of PW on L. carponotatus. Using a suite of biomarkers has been widely advocated as a vital component in environmental risk assessments worldwide. This study demonstrates the usefulness of biomarkers for assessing the Harriet A PW discharge into Australian waters with broader applications for other PW discharges. This approach has merit as a valuable addition to environmental management strategies for protecting Australia’s tropical environment and its rich biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanofibrous materials yielded by the self-assembly of peptides are rich in potential; particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. Here, we report a novel methodology to direct the formation of supramolecular structures presenting desirable amino acid sequences by the self-assembly of minimalist peptides which cannot otherwise yield the desired scaffold structures under biologically relevant conditions. Through the rational modification of the pK?, we were able to optimise ordered charge neutralised assembly towards in vivo conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resolvin family contains important anti-inflammatory and pro-resolution compounds enzymatically derived in vivo from the polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). More recently, docosapentaenoic acid (DPA) has emerged as another potentially important precursor in the biological production of resolvin compounds. In this work we have used medium engineering to develop a simple method for the controlled synthesis of two di-hydroxylated diastereomers of DPAn-3 catalyzed by soybean 15-lipoxygenase-1 (15-sLOX-1) in the presence of short chain n-alcohols, including methanol, ethanol and propan-1-ol. The complete structures of the two major products, 7S,17S-dihydroxydocosapenta-8Z,10E,13Z,15E,19Z-enoic acid (7S,17S-diHDPAn-3) and 7R,17S-dihydroxydocosapenta-8Z,10E,13Z,15E,19Z- enoic acid (7R,17S-diHDPAn-3), have been elucidated using spectroscopic analysis. The alcohol-dependent R-dioxygenase activity of soybean 15-lipoxygenase with mono-hydroperoxide intermediate substrates has also been demonstrated with other biologically relevant PUFAs, including DHA, EPA and ARA. The developed method has applications in the production of closely related isomers of naturally occurring resolvins and protectins, demonstrating the versatility of 15-sLOX-1 as a biocatalyst. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Mycorrhiza, a symbiotic soil fungus was identified as a biotic elicitor of antioxidant compounds found in the plant roots. In vitro developed technique and bioresources carry potential towards formation of biological and biochemical factories for application in the agricultural and pharmaceutical industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Afforestation of agricultural land is increasing, partly because it is an important biological method for reducing the concentration of atmospheric CO2 and potentially mitigating climate change. Rainfall patterns are changing and prolonged dry periods are predicted for many regions of the world, including southern Australia. To accurately predict land-use change potential for mitigating climate change, we need to have a better understanding of how changes in land-use (i.e. afforestation of pastures) may change the soils response to prolonged dry periods. We present results of an incubation study characterising C and N dynamics and the microbial community composition in soil collected from two tree plantings and their adjacent pastures under a baseline and reduced frequency. While the concentration of soil C was similar in pasture and tree planting soils, heterotrophic respiration was significantly lower in soil from pastures than tree plantings. Although there was little difference in the composition of the soil microbial community among any of the soils or treatments, differences in N cycling could indicate a difference in microbial activity, which may explain the differences in heterotrophic respiration between pastures and tree plantings. Soils from pastures and tree plantings responded similarly to a reduction in wetting frequency, with a decrease in microbial biomass (measured as total PLFA), and a similar reduction in heterotrophic respiration from the soil. This suggests that the responses to changes in future wetting cycles may be less dependent on land-use type than expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well.