12 resultados para Benzyl diamines

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a 1,2,3-trisubstituted imidazolium salt of the bis[(trifluoromethyl)sulfonyl)]amide ion is presented; this salt is a prototype for similar, room temperature liquid, imidazolium salts; the structure shows that the anion and cation interact weakly, with little if any hydrogen bonding present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Ethylcarboxamidoadenosine (12) was synthesised from adenosine (1) and the 6-chloro-2’,3’-O-isopropylidene-AT-ethylcarboxamidoadenosine (25) was synthesised from inosine (19). Employing molecular modelling techniques and the results from previous structure activity relationships it was possible to design and synthesise a N6-substituted N-ethylcarboxamidoadenosines which possessed an oxygen in the N6-substituent either in the form of an epoxide (which was obtained by cpoxidising an alkene with m-CPBA or dimethyldioxirane) or in the form of a cyclic ether as was the case for N6-((tetrahydro-2H--pyran--2-yl)methyl-N-ethylcarboxamidoadenosine (78). These compounds were tested for their biological activity at the A1 adenosine receptor by their ability to inhibit cAMP accumulation in DDT, MF2 cells. The EC50 values obtained indicated that the N6-(norborn-5-en-2-yl)-N-ethylcarboxamidoadenosines were the most potent. Of theseN6-(S-endo-norbrn-5-en-2-yI)-N-ethylcarboxaniidoadenosine (56) was the most potent (0.2 nM). N6-(exo-norborn-5-en-2-yl)-2-iodo-N-ethylcarboxamidoadenosine (79) was synthesised from guanosine (22) and was also evaluated for its potency at the A, receptor (24.8 ± 1.5 nM). At present 79 is being evaluated for its selectivity for the A1 receptor compared to the other three receptor subtypes (A2a, A2b, A3). A series of N6-(benzyl)-N-ethylcarboxamidoadenosines were synthesised with substitutions at the 4-position of the phenyl ring. Another series of compounds were synthesised which replaced the methylene spacer between the N6H and the N6-aromatic or lipophilic substituent The replacement groups -were carbonyl and trans-2- cyclopropyl moieties. The N6-acyl compounds were obtained by reacting 2’,3’-O- di(tert-butyldimethylsilyl)-AT-ethylcarboxamidoadenosinc (59) with the appropriate acid chloride and then deprotecting with lelrabutylammonium fluoride in tetrahydrofuran. The compound N6-(4-(1,2-dihydroxy)ethyl)benzyl-N- ethylcarboxamidoadenosine (125) was synthesised by the reaction of 4-(1,2-0- isopropylidene-ethyl)benzyl aminc (123) with 6-chloro-2,3-0-isopropylidene-N- ethylcarboxamidoadenosine (25). Compound 123 was synthesised from an epoxidation of vinylbenzyl phthalimide (118) followed by an acidic ring opening to yield the diol which was isopropylidenated to yield 4-(l,2-O-isopropylidene- elhyl)benzyl phlhalimide (122), It was hoped that the presence of the diol functionality in 125 would increase water solubility whilst maintaining potency at the A3 receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports on the feasibility of the utilization of organotin hydrides as enaantioselective free radical reducing agents. The chiral organotin hydrides prepared contain the bulky chiral (1R,2S,5R)-menthyl substituent and in some cases also contain a stereogenic tin centre. Reaction of (1R,2S,5R)-menthylmagnesium chloride (MenMgC1) with triphenyltin chloride in THF proceeds with epimerization of the C-1 carbon of the menthyl group and results in a mixture of (1R,2S,5R)-menthyltriphenyltin and (1S,2S.5R)-menthyltriphenyltin. Addition of Lewis bases such as triphenylphosphine to the THF solution of triphenyltin chloride prior to the addition of the Grignard reagent suppresses epimerization and enables isolation of pure (1R,2S,5R)-menthyltriphenyltin. (1R,2S,5R)-Menthyltriphenyltin is the precursor for the synthesis of (1R,2S,5R)-menthyldiphenyltin hydride as well as (1R,2S,5R)-menthyl-containing organotin halide derivatives. A crystal structure of (1R,2S,5R)-menthylphenyltin dibromide and (1R,2S,5R)-menthylphenyltin dichloride confirmed the configuration of the menthyl substituent in these compounds. Reaction of MenMgC1 with diphenyltin dichloride in THF proceeds with no epimerization of the C-1 carbon of the menthyl group and bis((1R,2S,5R)-menthyl)diphenyltin is formed. A crystal structure of (1R,2S,5R)-menthyltriphenyltin confirmed the configuration of the menthyl substituent. Bis((1R,2S,5R)-menthyl)diphenyltin is used to form bis((1R,2S,5R)-menthyl)phenyltin hydride as well as other bis(1R,2S,5R)-menthyl derivatives. A series of chiral non-racemic triorganotin halides and triorganotin hydrides containing one or two (1R,2S,5R)-menthyl substituents as well as various potentially intramolecular coordination substituents were synthesized and characterized. The intramolecular substituents include the 8-(dimethylamino)naphthyl, 2-[(1S)-1-dimethylaminoethyl]phenyl, 2-(4,4-dimethyl-2-oxazoline)-5-methylphenyl and the 2-(4-(S)isopropyl-2-oxazoline)-5-methylphenyl substituents. Each compound containing a stereogenic tin centre was synthesized as diastereomeric mixtures. AM1 calculations of these compounds provide good qualitative predictability of the molecular geometries observed in the solid state as well as the diastereomeric ratios observed in solution. X-ray analysis of some of the organotin halides containing intramolecular coordination substituents revealed a tendency towards penta-coordination at the tin centre as a result of N-Sn interactions. The chiral organotin hydrides synthesized were found to be poor enantioselective free radical reducing agents. However, the addition of one molar equivalent of achiral or chiral Lewis acids to the free radical reduction reactions involving these organotin hydrides results in remarkable increases in enantioselectivity. There are numerous examples in which enantioselectivities exceed 80% and three examples of enantioselectivites which are equal and above 90% with one outstanding enantioselective outcome of ≥99%. These results appear to be the highest enantioselectivites for organotin hydride radical reductions reported to date. There is strong evidence to suggest that the chiral menthyl group of the organotin hydride directs the stereochemical outcome in the reduced product. The results also suggest that an increase in the number of menthyl substituents attached to tin or the introduction of intramolecular coordination substituents does not necessarily results in a greater increase in enantioselectivity. Preliminary studies into the synthesis of organotin hydrides containing Lewis acid functionalities are also reported. A zirconium chloride functionality was found to be incompatible with organotin hydride. However, an organotin hydride containing a trialkylboron Lewis acid functionality attached via an alkyl chain was successfully synthesized. Although this reagent was only stable in the preparative THF solution, it was still found to be effective at reducing benzaldehyde to benzyl alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipophilicity, permeability, solubility, polar surface area and ‘rule-of-five’ properties were assessed, using QikProp v2.5 (Schrödinger, Inc.) and ALOGPS 2.1 calculations, for 25 Hyphodermin derivatives. These compounds obeyed the ‘rule-of-five’, and the calculated physicochemical values were generally within desired limits. All compounds were tested against Glycogen Phosphorylase a (GPa). Four phenyl and benzyl substituted 2-oxo-hexahydro and tetrahydrobenzo[cd]indole carboxylic acids were identified as novel inhibitors of GPa with estimated IC50 values in the range 0.8–1.3 mM. Molecular modelling of these novel inhibitors was used to obtain the main structural features of this class of molecule for future structure–activity relationship studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystalline spherulitic fiber networks are commonly observed in polymeric and supramolecular functional materials. The elasticity of materials with this type of network is low if interactions between the individual spherulites are weak (mutually exclusive). Improving the elasticity of these materials is necessary because of their important applications in many fields. In this work, the engineering of the microstructures and rheological properties of this type of material is carried out. A small molecule organogel formed by the gelation of N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol (PG) is used as an example. The elasticity of this material is improved by controlling the thermodynamic driving force, the supersaturation of the gelator, and by using a selected copolymer additive to manipulate the primary nucleation of GP-1. Because of the weak interactions between the GP-1 spherulites, with the same fiber mass, the elasticity of GP-1/PG gel is less than half of those of the other two gels formed by GP-1 and 2-hydroxystearlic acid in solvent benzyl benzoate (BB), which are supported by interconnecting spherulitic fiber networks. This work develops a robust approach to the engineering of supramolecular functional materials especially those with mutually exclusive spherulite fiber networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of most organogels requires the compatibility of both the gelator and solvent. It is very desirable if the rheological properties of a gel can be manipulated to achieve the desired performance. In this paper, a novel organogel was developed and its rheological properties and fiber network were engineered by controlling the thermal processing conditions. The gel was formed by the gelation of 12-hydroxystearic acid as a gelator in benzyl benzoate. It was observed that the degree of supercooling for gel formation has a significant effect on the rheological properties and fiber network structure. By increasing supercooling, the elasticity of the gel was enhanced, and the correlation length of the fibers was shortened, leading to the formation of denser fiber networks. The good biocompatibility of both the gelator and solvent makes this gel a promising vehicle for a variety of bioapplications such as controlled transdermal drug release and in vivo tissue repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical cleavage by Scotch tape was the first method to produce graphene and is still widely used in laboratories. However, a critical problem of this method is the extremely low yield. We have tailored ball milling conditions to produce gentle shear forces that produce high quality boron nitride (BN) nanosheets in high yield and efficiency. The in-plane structure of the BN nanosheets has not been damaged as shown by near edge X-ray absorption fine structure measurements. The benzyl benzoate acts as the milling agent to reduce the ball impacts and milling contamination. This method is applicable to any layered materials for producing nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 An exploration of the chemiluminescence from reactions of a large number of benzyl and phenylpiperazine analytes with tris(2,2’-bipyridyl)ruthenium(III) was carried out providing information towards the emission intensity of this chemiluminescent reagent and the structure of analytes it interacts with.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five new organotin(IV) complexes of composition [Bz2SnL1]n (1), [Bz3SnL1HH2O] (2), [Me2SnL2H2O] (3), [Me2SnL3] (4) and [Bz3SnL3H]n (5) (where L1 = (2S)-2-([(E)-(4-hydroxypentan-2-ylidene)]amino)-4-methylpentanoate, L2 = (rac)-2-([(E)-1-(2-hydroxyphenyl)methylidene]amino)-4-methylpentanoate and L3 = (2S)- or (rac)-2-([(E)-1-(2-hydroxyphenyl)ethylidene]amino)-4-methylpentanoate) were synthesized and characterized using 1H NMR, 13C NMR, 119Sn NMR and infrared spectroscopic techniques. The crystal structure of 2 reveals a distorted trigonal-bipyramidal geometry around the tin atom where the oxygen atoms of the carboxylate ligand and a water ligand occupy the axial positions, while the three benzyl ligands are located at the equatorial positions. On the other hand, the analogous derivative of enantiopure L3H (5) consists of polymeric chains, in which the ligand-bridged tin atoms adopt the same trans-Bz3SnO2 trigonal-bipyramidal configuration and are now coordinated to a phenolic oxygen atom instead of H2O. In 2, the OH hydrogen of the ketoimine substituent has moved to the nearby nitrogen atom while in the salicylidene derivative 5, the OH is located almost midway between the phenolic oxygen atom and the nitrogen atom of the C=N group. For the dibenzyltin derivative 1, a polymeric chain structure is observed as a result of a long intermolecular SnO bond involving the exocyclic carbonyl oxygen atom from the tridentate ligand of a neighbouring tin-complex unit. The tin atom in this complex has distorted octahedral coordination geometry. In contrast, the racemic dimethyltin(IV) complexes 3 and 4 display discrete monomeric structures with a distorted octahedral- and trigonal-bipyramidal geometry, respectively. The structures show that the coordination mode of the Schiff base ligand depends primarily on the number of bulky benzyl ligands (R) at the tin atom, as indeed found in the structures of related complexes where R = phenyl. With three bulky R groups, the tridentate chelating O,N,O coordination mode is preferred, whereas with fewer or less bulky R ligands, only the carboxylate and hydroxy groups are involved, which leads to polymers. Larvicidal efficacies of two of the new tribenzyltin(IV) complexes (2 and 5) were assessed on the second larval instar of Anopheles stephensi mosquito larvae and compared with two triphenyltin(IV) analogues, [Ph3SnL1H]n and [Ph3SnL3H]n. The results demonstrate that the compounds containing Sn-Ph ligands are more effective than those with Sn-Bz ligands.