7 resultados para Benzo[a]pireno

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C14H10N2O2, the dihedral angle formed between the substituted pyridine ring and 1,3-benzodioxole group is 67.73 (6)°. The crystal features chains of molecules held together by alternating [π]...[π] and C-H...[π] interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed.

Hydrogen peroxide–zinc (H2O2–Zn), the fungus – Aspergillus niger and the bacteria – Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus–bacteria combined with H2O2–Zn, the concentration range of BaP in the cultures was 30–120 mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12 d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10—200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is neither comprehensive nor appropriate that the bioremediation of a benzo[a]pyrene (BaP)-contaminated environment be assessed only by its high degradation extent because its metabolites' chemical structures are similar to the parent compound and maybe equally toxic. Therefore, further degradation of BaP metabolites is significant. Three methods, combining the Zoogloea sp. with potassium permanganate, combining the Zoogloea sp. with H2O2, Zoogloea sp. alone, were investigated to degrade cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol, which are the metabolites of BaP formed by bacterium-Zoogloea sp. Optimum parameters of degradation in the best method are that: of the three methods, coupling the Zoogloea sp. and KMnO4 is the best; compared with cis-BP7,8-dihydrodiol, cis-BP4,5-dihydrodiol is the more liable to be accumulated in pure cultures; the degradation effect of the two metabolites is optimal when the initial concentration of KMnO4 in the cultures is 0.05%; initial concentration of cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol is 4 mg L−1, 8 mg L−1, respectively; cometabolic substance is salicylic acid or sodium succinate. The degradation extent of cis-BP4,5-dihydrodiol and cis-BP7,8-dihydrodiol using combining the Zoogloea sp. and KMnO4 reach 76.1% and 85.9% after 12 days of cultivation, respectively, which were more than twice compared with conventional method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose : The choice and timing of microorganisms added to soils for bioremediation is affected by the dominant bioavailable contaminants in the soil. However, changes to the concentration of bioavailable PAHs in soil are not clear, especially when several PAHs coexist. This study investigated the effects of PAH concentration and chemical properties on desorption in meadow brown soil after a 1-year aging period, which could reflect changes of PAH bioavailability during bioremediation. Materials and methods : Based on the percentage of different molecular weights in a field investigation, high-level contaminated soil (HCS) and low-level contaminated soil (LCS) were prepared by adding phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (BaP) to uncontaminated meadow brown soil. The concentrations of HCS and LCS were 250 mg kg−1 (PHE, PYR, and BaP: 100, 100, and 50 mg kg−1) and 50 mg kg−1 (PHE, PYR, and BaP: 20, 20, and 10 mg kg−1) respectively. The soils were aged for 1 year, after which desorption was induced by means of a XAD-2 adsorption technique over a 96-h period. Results and discussion : The range of the rapidly desorbing fraction (F rap) for PHE, PYR, and BaP in HCS and LCS was from 1.9 to 27.8 %. In HCS, desorption of PYR was most difficult, and the rate constant of very slow desorption (K vs) of PYR was 8 orders of magnitude lower than that of BaP, which had similar very slow desorbing fractions (49.8 and 50.5 %, respectively). However, in LCS, desorption of PYR was the easiest; the Kvs of PYR was 8–10 orders of magnitude higher than those of PHE and BaP. In HCS, the time scale for release of 50 % of the PAHs was ranked as BaP > PYR > PHE, while in LCS this was BaP > PHE > PYR. Conclusions : The combined effect of PAH concentrations and properties should be taken into account during desorption. The desorption of PAH did not always decrease with increasing molecular weight, and the desorption of four-ring PAHs might be special. These results are useful for screening biodegrading microbes and determining when they should be added to soils based on the dominant contaminants present during different periods, thus improving the efficiency of soil bioremediation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The toxicity of sublethal polycyclic aromatic hydrocarbons (PAHs) levels in soils was assessed by testing their impact on expression of annetocin, a reproduction regulating gene, and translationally controlled tumor protein (TCTP), a tumorigenic response gene, in the earthworm Eisenia fetida cultured in artificial soil spiked with, phenanthrene (Phe), pyrene (Pyr), fluoranthene (Flu), or benzo(a)pyrene (Bap). Annetocin and TCTP were both up-regulated by 0.1 and 1.0 mg kg−1 benzo(a)pyrene and TCTP was down-regulated by 10.0 mg kg−1 phenanthrene. Weight loss and cocoon production of the worms were also analyzed. Only 10.0 mg kg−1 phenanthrene impacted earthworm weight loss significantly and no significant differences on cocoon production were observed. Our study indicated that the potential ecotoxicity of sublethal PAHs in soil should not be neglected and mRNA transcription level in earthworms was a more sensitive indicator of PAHs exposure than traditional indexes using cocoon production as endpoints and/or using the whole-organism as the test materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The earthworm Eisenia fetida's benzo [a] pyrene (BaP) exposure experiments were carried out in artificial soil according to ISO 11268-1:1993. And then the upregulated and downregulated subtractive cDNA libraries were constructed by Clontech PCR-Select cDNA Subtration Kit. From the BaP exposure upregulated subtractive cDNA library, several cDNA segments matched mitochondrion-encoded genes were found, including cytochrome c oxidase subunit I (CO I), subunit II (CO II), subunit Ill (CO III), NADH dehydrogenase subunit 1 (NDH1), and ATP synthase subunit 6. The result indicated BaP and the subsequent oxidative stress disturbed the expression of mitochondrion-encoded genes, and this was potential biomarker for oxidative stress following xenobiotic exposure.