88 resultados para Bed dip

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel combined theoretical and computational model is developed to simulate the heat and mass transfer between a fluidised bed and a workpiece surface, and within the workpiece by considering the fluidised bed as a medium consisting of a double-particle layer and an even porous layer. The heat and mass-transfer flux from the fluidised bed to the workpiece surface is contributed by dense and bubble phases, respectively. The convective heat and mass transfer is simulated by analysing the gas dynamics in the fluidised bed, while radiative heat transfer is modelled by simulating photon emission in a three-dimensional particle array. The simulation shows that convection is approximately constant, while radiation contributes significantly to the heat transfer. The heat-transfer coefficient on an immersed surface near particles is about 6–10 times that on other areas. The transient heat and mass-transfer coefficient, heat and mass-transfer flux on any surface of the workpiece, transient temperature and carbon distributions at any position of the workpiece during the metal carburising process are studied with the simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CrN coatings were formed on plain carbon steel by prenitrocarburizing, followed by thermoreactive deposition and diffusion (TRD) in a fluidized bed furnace at 570 °C. During TRD, Cr was transferred from Cr powder in the fluidized bed to the nitrocarburized substrates by gas-phase reactions initiated by reaction of HCl gas with the Cr. The microstructural processes occurring in the white layer, caused by N diffusion toward the surface during this stage were studied. This study compares TRD atmospheres employing inert gas and HCl or inert gas, H2, and HCl. Surface characterization was performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical-emission spectroscopy (GDOES).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass transfer during carburising in a fluidised bed and in a steel workpiece has been studied experimentally in this work. This involved carburising experiment in an electrically heated fluidised bed at 900–970°C with natural gas and air as the atmosphere. A steel workpiece was designed to provide a range of carbon transfer surfaces of different geometries in the fluidised bed, and the carbon transfer coefficient was measured at these surfaces. The carbon transfer coefficient was determined from the carbon distribution within the diffusion layer of the sample. An empirical relationship of the carbon potential as a function of carburising atmosphere, bed temperature and fluidising velocity was determined, based on the understanding of the mass transfer mechanism and analysis of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia dissociation is the controlling reaction for several important thermochemical heat treatment processes; nitriding, nitrocarburising (ferritic and austenitic) and carbonitriding. The fluidised bed furnace is a convenient and widely used medium for all of these treatments, yet understanding of the reaction in a fluidised bed context is minimal. This paper deals with the influence of process parameters on nitrogen activity aN; temperature, fluidising flowrate, ammonia inlet level, carbonaceous gas. Two basic behaviours were observed; inlet NH3-dependant and inlet NHr insensitive, with a transition region at intermediate temperatures. The nitrocarburising response of steel specimens was measured by optical microscopy of the layer thicknesses and glow discharge optical emission spectroscopy (GD-OES) determination of nitrogen depth-penetration profiles. aN was found by gas analysis of the exit stream ammonia with the aid of a dissociation burette.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110–1050 °C and a fluidising number range of 1.18–4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carburising of a steel workpiece with complex geometry in a fluidised bed hasbeen studied experimentally. This involved carburising experiment in an electrically heated fluidised bed at 900 - 970°C with natural gas and air as the atmosphere. The carbon transfer coefficient at the workpiece surface and diffusivity within the workpiece were determined from the carbon distribution within the diffusion layer of the sample. A reverse method and the Levenberg-Marquardt algorithm were used in the calculations. The methodology of the reverses method to extract the carbon transfer coefficient and diffusivity is also discussed in some detail.