5 resultados para Basal-lateral Membrane

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caveolae are small invaginations of the cell surface that are abundant in mature adipocytes. A recent study (Kanzaki, M., and Pessin, J. E. (2002) J. Biol. Chem. 277, 25867-25869) described novel caveolin- and actin-containing structures associated with the adipocyte cell surface that contain specific signaling proteins. We have characterized these structures, here termed "caves," using light and electron microscopy and observe that they represent surface-connected wide invaginations of the basal plasma membrane that are sometimes many micrometers in diameter. Rather than simply a caveolar domain, these structures contain all elements of the plasma membrane including clathrin-coated pits, lipid raft markers, and non-raft markers. GLUT4 is recruited to caves in response to insulin stimulation. Caves can occupy a significant proportion of the plasma membrane area and are surrounded by cortical actin. Caveolae density in caves is similar to that on the bulk plasma membrane, but because these structures protrude much deeper into the plane of focus of the light microscope molecules such as caveolin and other plasma membrane proteins appear more concentrated in caves. We conclude that the adipocyte surface membrane contains numerous wide invaginations that do not represent novel caveolar structures but rather large surface caves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper is an essential trace element necessary for normal growth and development. During pregnancy, copper is transported from the maternal circulation to the fetus by mechanisms which have not been clearly elucidated. The copper uptake protein, hCTR1 is predicted to play a role in copper transport in human placental cells. This study has examined the expression and localisation of hCTR1 in human placental tissue and Jeg-3 cells. In term placental tissue the hCTR1 protein was detected as a 105 kDa protein, consistent with the size of a trimer which may represent the functional protein. A 95 kDa band, possibly representing the glycosylated protein, was also detected. hCTR1 was localised within the syncytiotrophoblast layer and the fetal vascular endothelial cells in the placental villi and interestingly was found to be localised toward the basal plasma membrane. It did not co-localise with either the Menkes or the Wilson copper transporting ATPases. Using the placental cell line Jeg-3, it was shown that the 35 kDa monomer was absent in the extracts of cells exposed to insulin, estrogen or progesterone and in cells treated with estrogen an additional 65 kDa band was detected which may correspond to a dimeric form of the protein. The 95 kDa band was not detected in the cultured cells. These results provide novel insights indicating that hormones have a role in the formation of the active hCTR1 protein. Furthermore, insulin altered the intracellular localisation of hCTR1, suggesting a previously undescribed role of this hormone in regulating copper uptake through the endocytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virulence of the malaria parasite, Plasmodium falciparum, is due in large part to the way in which it modifies the membrane of its erythrocyte host. In this work we have used confocal microscopy and fluorescence recovery after photo-bleaching to examine the lateral mobility of host membrane proteins in erythrocytes infected with P falciparum at different stages of parasite growth. The erythrocyte membrane proteins band 3 and glycophorin show a marked decrease in mobility during the trophozoite stage of growth. Erythrocytes infected with a parasite strain that does not express the knob-associated histidine-rich protein show similar effects, indicating that this parasite protein does not contribute to the immobilization of the host proteins. Erythrocytes infected with ring-stage parasites exhibit intermediate mobility indicating that the parasite is able to modify its host prior to its active feeding stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal's BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5. 5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.