6 resultados para Barrier performance

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of adding glycerol carbonate (GC) or propylene carbonate (PC) to sodium (Na)-bentonite on the hydraulic performance of geosynthetic clay liners (GCLs) under hypersaline conditions is examined. Fluid loss (FL), swell index (SI) and solution retention capacity (SRC) measurements were carried out to compare the potential hydraulic performance of these two cyclic organic carbonates (COCs) as bentonite modifiers. A modified FL test enabled quantitative measurement of both the water retention characteristics of untreated and COC modified bentonites as well as calculation of hydraulic conductivity values. Tests under aggressively saline conditions (ionic strength, I ≥ 1 M of NaCl and ≥3 M of CaCl2) showed that at a mass ratio of 1:1 (GC to bentonite), the FL of a GC-Na-bentonite was ≈40–104 mL in NaCl and ≈61–91 mL in CaCl2. This was about 10–20 mL and 70–200 mL, respectively, lower than that of a comparable PC-Na-bentonite (1:1 PC to bentonite) and untreated Na-bentonite. Greater swelling (SI) and greater solution retention capacity (SRC) was observed for the GC treated Na-bentonite compared to untreated Na-bentonite in all salt solutions, and for PC-Na-bentonite at high ionic strength of both NaCl and CaCl2 solutions, demonstrating the superior hydraulic barrier performance of COC-bentonites under severely saline conditions. Experiments conducted in flexible-wall permeameters with I = 3 M CaCl2 showed approximately one order of magnitude lower (∼10−11 m/s vs ∼1.9 × 10−10 m/s) hydraulic conductivity of GC treated bentonite cake compared to the k value of the untreated Na-bentonite cake. Calculated hydraulic conductivity from fluid loss tests estimated the measured values in a conservative way (overestimation).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An overview of the design and performance of geosynthetics in composite barrier systems for biopiles used to remediate hydrocarbon-contaminated soil at Casey Station, Antarctica, is presented. Seven instrumented biopiles were constructed over three field seasons. To minimize the risk of hydrocarbon migration to groundwater, composite barrier systems were used (each using different combinations of geosynthetic clay liners (GCLs), high density polyethylene (HDPE) geomembranes (GMB), and geotextiles (GTXs)). One biopile used a co-extruded geomembrane (HDPE with an ethylene vinyl alcohol (EVOH) core). The liner system was subject to a combination of coupled phenomena that could interact and affect the GMB-GCL composite barrier performance. The exposure conditions involved potential freeze-thaw cycling, hydration-desiccation cycles, cation exchange, direct and diffusive exposure to hydrocarbons. The effect of these phenomena was investigated by monitoring GCL and GMB sacrificial coupons. GCL coupons were placed between the main GCL component and the main geomembrane component of the composite liner and GMB coupons placed between the main GMB sheet and the GTX protection layer. Coupons were exhumed from the biopiles each year. The exhumed GCL field moisture content values ranged from 162% to 22%. After three (3) years in the field, GCL coupons that had undergone at least one hydration/desiccation cycle showed no significant change in swell index values or fluid loss values. The measured hydraulic conductivity of exhumed GCL coupons from Biopiles 1 and 2 (3 × 10-11 m s-1) was within the expected range and not significantly different from the values for virgin GCL. GMB coupons exhumed after three years from Biopiles 1 and 2 showed no significant change in oxidative induction time (OIT), melt flow index or tensile properties. Diffusion tests were performed as an index test for establishing the performance of the GMBs as a diffusive barrier to hydrocarbons, with permeation parameters for BTEX contaminants ranging from P g = 0.9-9.2 × 10-13 m2 s-1 for the exhumed GMB (with values depending on the contaminant and GMB). These values were similar to the parameters obtained for virgin GMBs and there was no significant change with field exposure, with GMBs appearing to be performing well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Layered fabric systems with an electrospun nanofiber web layered onto a sandwich of woven fabric were developed toexamine the feasibility of developing breathable barrier textile materials. Some parameters of nanofiber mats, including thetime of electrospinning and the polymer solution concentration, were designed to change and barrier properties ofspecimens were compared. Air permeability, water vapor transmission, and water repellency (Bundesmann and hydrostaticpressure tests) were assessed as indications of comfort and barrier performance of different samples. These performancesof layered nanofiber fabrics were compared with a well-known water repellent breathable multi-layered fabric(Gortex).Multi-layered electrospun nanofiber mats equipped fabric (MENMEF) showed better performance in windproof propertythan Gortex fabric. Also, water vapor permeability of MENMEF was in a range of normal woven sport and work clothing.Comparisons of barrier properties of MENMEF and the currently available PTFE coated materials showed that, thoseproperties could be achieved by layered fabric systems with electrospun nanofiber mats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The era of legislation and creditable methods towards producing sustainable buildings is upon us. Yet, a major barrier to achieving environmental responsive design is in the lack of available information at the programming or pre-design phases of a project. The review and evaluation of climate as well as energy-efficient strategies could be difficult to consider at these preliminary stages. Until recently, introducing energy simulation tools at the design stage has been difficult and perhaps next to impossible at a pre-design or programming stage. However, analysis of this sort is essential to ‘green building rating’ or performance assessment schemes such as LEED (Leadership in Energy and Environmental Design) and BREEAM (Building Research Establishment Environment Assessment Method). This paper discusses the implementation of a particular tool, ENERGY-10, where ‘basecase’ building defaults are compared to a low-energy case which has applied multiple energy-efficient strategies automatically. An annual hour-by-hour simulation provides a daylighting calculation with a subsequent thermal evaluation. Calculation results provide energy consumption, peak load equipment sizing, a RANK feature of the energy-efficient strategies, reporting of CO2, SO2 and NOx reduction, optimum glazing type as well as excellent graphic output. Consideration is given as to the approach of how such information can be introduced into the building project brief enforcing a low-energy
performance target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the second phase of a research project aimed at the development of an environmentally friendly noise barrier for urban freeways, also known as KMAK (Krezel and McManus, 2007). The concrete barrier, which has some unique capabilities to mitigate transportation noise, is made from recycled concrete (RC) aggregate and industrial by-products such as fly ash and reclaimed water. The current developmental work expands on a research project that resulted in a two-layer (2L) concrete barrier. Two prototypes of the 2L barrier were produced, followed by extensive acoustic testing and a number of simulations where standard timber and/or concrete barriers were substituted with KMAK barrier (Krezel et al, 2004). Current research investigates a variety of architectural finishes applied to the original KMAK barrier with the aim of improving its visual appearance and also fine-tuning its acoustic performance. The new three-layer (3L) barrier optimises sound absorption in a frequency range characteristic to that of transportation noise, especially road traffic noise. Three major aspects related to the development of architectural finishes were considered; environmentally responsible materials, surface features and production methods. The light-weight material used in the architectural finish is based on ordinary Portland cement (OPC) and uses very fine fraction of RC aggregate. The manufacturing process of the 3L barrier was tested in a commercial setting and two sets of prototype barrier were cast. An innovative, cost effective method of applying pattern and perforation to the surface of architectural finish was also developed and tested. The findings of the current investigation demonstrate that there is a positive correlation between surface features, percentage of perforation as well as depth of the architectural layer and increased potential of the 3L barrier to mitigate transportation noise. On average, the addition of perforated architectural finish contributes to 20% increase in sound absorption. The preliminary results also show that the sound absorbency of the 3L barrier can be better controlled and tuned to specific noise frequency. The visual appearance has been significantly improved with the addition of the architectural finish, which makes the barrier an attractive, feasible and viable alternative to road barriers made from standard concrete or timber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the second phase of a research project aimed at the development of an environmentally friendly noise barrier for urban freeways, also known as KMAK [1]. The concrete barrier, which has some unique capabilities to mitigate transportation noise, is made from recycled concrete (RC) aggregate and industrial by-products such as fly ash and reclaimed water. The current developmental work expands on a research project that resulted in a two-layer (2L) concrete barrier. Two prototypes of the 2L barrier were produced, followed by extensive acoustic testing and a number of simulations where standard timber and/or concrete barriers were substituted with KMAK barrier [2]. Current research investigates a variety of architectural finishes applied to the original KMAK barrier with the aim of improving its visual appearance and also fine-tuning its acoustic performance. The new three-layer (3L) barrier optimizes sound absorption in a frequency range characteristic similar to that of transportation noise, especially road traffic noise. Three major aspects related to the development of architectural finishes were considered; environmentally responsible materials, surface features, and production methods. The findings of the current investigation demonstrate that there is a positive correlation between surface features, percentage of perforation as well as depth of the architectural layer, and increased potential of the 3L barrier to mitigate transportation noise. On average, the addition of perforated architectural finish contributes to a 20% increase in sound absorption. The preliminary results also show that the sound absorbency of the 3L barrier can be better controlled and tuned to specific noise frequency than the 2L type. The visual appearance has been significantly improved with the addition of the architectural finish, which makes the barrier an attractive, feasible, and viable alternative to road barriers made from standard concrete or timber.