9 resultados para Barium zirconate titanates

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigated the oxygen permeation properties of barium bismuth iron oxide within the family of [Ba2−3xBi3x−1][Fe2xBi1−2x]O2+3x/2 for x = 0.17–0.60. The structure changed progressively from cubic to tetragonal and then to hexagonal as function of x in accordance with the different relative amounts of bismuth on A-site and B-site of ABO3−δ perovskite lattices. We found that the oxygen flux and electrical conductivity correlated strongly, and it was prevalent for the cubic structure (x = 0.33–0.40) which conferred the highest oxygen flux of 0.59 ml min−1 cm−2 at 950 °C for a disk membrane x = 0.33 with a thickness of 1.2 mm. By reducing the thickness of the disk membrane to 0.8 mm, the oxygen flux increased to 0.77 ml min−1 cm−2, suggesting both surface kinetics and ion diffusion controlled oxygen flux, though the former was more prominent at higher temperatures. For disk membranes x = 0.45–0.60, the perovskite structure changed to tetragonal and hexagonal, and the oxygen flux was insignificant below 900 °C, clearly indicating electron conduction properties only. However, for two compositions with relatively high bismuth content, e.g. x = 0.55 and 0.60, there was a sudden and significant rise of oxygen permeability above 900 °C, by more than one order of magnitude. These materials changed conduction behavior from metallic to semiconductor at around 900 °C. These results suggest the advent of mixed ionic electronic conducting properties caused by the structure transition as bismuth ions changed their valence states to compensate for the oxygen vacancies formed within the perovskite lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt-free perovskite cathode with excellent oxygen reduction reaction (ORR) properties below 800 °C is a key material toward wide implementation of intermediate-temperature solid oxide fuel cells. This work reports the phase structure, microstructure and performance of such cathode based on the composite phases of triclinic Ba0.9Bi0.1FeO3-δ, cubic BaFeO3 and orthorhombic BaFe2O4 prepared by sol–gel route. The resultant barium ferrites composite cathode exhibits uniform particles, pores and elements distribution. In particular, favorable ORR properties of this cathode is demonstrated by very low interfacial resistance of only 0.036 and 0.072 Ω cm2 at 750 and 700 °C and maximum power density of 1295 and 840 mW cm−2 at 750 and 700 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The burning of brown coal for electricity generation produces thousands of tonnes of fly ash each year. Treatment of the fly ash can reduce leach rates of metals and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for fly ash obtained from electrostatic precipitators and ash disposal ponds. The ratio of fly ash and geopolymer was varied to determine the effects of different compositions on leaching rates. The major element leachate concentrations obtained from pond ash were lower than that of precipitator fly ash. Conversely, precipitator ash-geopolymers were better for trace heavy metal stabilisation. Effective reduction of elemental concentrations in the leachate has been achieved, particularly for calcium, arsenic, selenium, strontium and barium. Scanning electron microscopy revealed the distribution of metals originated from fly ash and from added geopolymer material. It also showed that some elements are leached from ash particles to the geopolymer phase and others remained as undissolved particles. Qualitative analysis showed that fly ash particles interacted with the geopolymers phase through surface reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash is generated from combustion of brown coal in power stations. The majority of fly ash is removed by electrostatic precipitators (ESP) and finally disposed into the landfill as prescribed wastes. A method was studied to add clay materials to the brown coal fly ash in order to form the so-called geopolymer network, which is effective at stopping the metal contents from leaching, and have minimum impact to the environment. The experiments were conducted parallel on leached fly ash and dry precipitator fly ash. The ratios of fly ash and added clay materials were varied to determine the effects of different compositions on leaching rates. Both X-ray diffraction analysis and scanning electron microscopy images showed that as the percentage of fly ash was increased, the formation of geopolymer is reduced. Eighteen metals and heavy metals were targeted during the leaching tests and the leachate samples were analysed using ICP-AES and ICP-MS. It was found that the reduction of metal leaching was achieved by adding up to 60% of fly ash to form the geopolymer like structure. Significant reductions were observed for calcium, strontium and barium. Leached fly ash achieved better stabilisation than dry precipitator fly ash for major elements. It's hard to quantify its effects on trace metals leaching due to their ultra low concentration in the fly ash. The samples spiked with trace metals of lead, zinc, mercury and barium showed remarkable reduction in leaching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research explores geopolymer technology as a means of stabilising fly ash from power stations. By controlling the synthesis process, geopolymeric materials incorporating fly ash were synthesised. Successful stabilisation of strontium and barium was achieved, though attributed to side reactions. The geopolymer did not contribute significantly to stabilisation of fly ash.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3-3 (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm-2 min-1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.