4 resultados para BRAZILIAN COAST

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Green turtles (Chelonia mydas) swim from foraging grounds along the Brazilian coast to Ascension Island to nest, over 2200 km distant in the middle of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we found turtles that had just completed nesting and then moved three individuals 50 km northwest (downwind) of the island and three individuals 50 km southeast (upwind). Their subsequent movements were tracked by satellite. Turtles released downwind returned to Ascension Island within 1, 2 and 4 days, respectively. By contrast, those released upwind had far more difficulty in relocating Ascension Island, two eventually returning after 10 and 27 days and the third heading back to Brazil after failing to find its way back to the island. These findings strongly support the hypothesis that wind-borne cues are used by turtles to locate Ascension Island.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Albatrosses and sea turtles are known to perform extremely long-distance journeys between disparate feeding areas and breeding sites located on small, isolated, oceanic islands or at specific coastal sites. These oceanic journeys, performed mainly over or through apparently featureless mediums, indicate impressive navigational abilities, and the sensory mechanisms used are still largely unknown. This research used three different approaches to investigate whether bi-coordinate navigation based on magnetic field gradients is likely to explain the navigational performance of wandering albatrosses in the South Atlantic and Indian Oceans and of green turtles breeding on Ascension Island in the South Atlantic Ocean. The possibility that magnetic field parameters can potentially be used in a bi-coordinate magnetic map by wandering albatrosses in their foraging area was investigated by analysing satellite telemetry data published in the literature. The possibilities for using bi-coordinate magnetic navigation varied widely between different areas of the Southern Oceans, indicating that a common mechanism, based on a bi-coordinate geomagnetic map alone, was unlikely for navigation in these areas. In the second approach, satellite telemetry was used to investigate whether Ascension Island green turtles use magnetic information for navigation during migration from their breeding island to foraging areas in Brazilian coastal waters. Disturbing magnets were applied to the heads and carapaces of the turtles, but these appeared to have little effect on their ability to navigate. The only possible effect observed was that some of the turtles with magnets attached were heading for foraging areas slightly south of the control turtles along the Brazilian coast. In the third approach, breeding female green turtles were deliberately displaced in the waters around Ascension Island to investigate which cues these turtles might use to locate and return to the island; the results suggested that cues transported by wind might be involved in the final stages of navigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777 to 2342 km in 33 to 47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west–south–westerly flowing current, possibly guided by chemical cues.