12 resultados para BETA-SHEETS

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cross-strand pair correlations are calculated for residue pairs in antiparallel β-sheet for two cases: pairs whose backbone atoms are hydrogen bonded together (H-bonded site) and pairs which are not (non-H-bonded site). The statistics show that this distinction is important. When glycine is located on the edge of a sheet, it shows a 3:1 preference for the H-bonded site. Thestrongest observed correlations are for pairs of disulfide-bonded cystines, many of which adopt a close-packed conformation with each cystine in a spiral conformation of opposite chirality to its partner. It is likely that these pairs are a signature for the family of small, cystine-rich proteins. Most other strong positive and negative correlations involve charged and polar residues. It appears that electrostatic compatibility is the strongest factor affecting pair correlation. Significant correlations are observed for β- and γ-branched residues inthe non-H-bonded site. An examination of the structures showsa directionality in side chain packing. There is a correlation between (1) the directionality in the packing interactions of non-H-bonded β- and γ-branched residue pairs, (2) the handedness of the observed enantiomers of chiral β-branched side chains, and (3) the handedness of the twist of β-sheet. These findings have implications for the formation of β-sheets during protein folding and the mechanism by which the sheet becomes twisted

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The self assembly of peptide hydrogelators that carry aromatic substituents can be modeled by a novel nanocylindrical architecture. The proposed model suggests that the nanocylinders are formed by anti-parallel β-sheets interlocked by the π-stacking interactions of fluorenyl groups and phenyl rings. This explanation is consistent with the structures observed in TEM and the data obtained by a variety of spectroscopic techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Between-strand disulfides (BSDs) connect cysteine (Cys) residues across adjacent strands of β-sheets. There are four BSD types which can be found in regular β-structure: CSDs, which link residues immediately opposite each other in the β-structure (residues i and j); ETDs, which connect Cys out of register by one residue (i and j ± 1); BDDs, which join Cys at positions i and j ± 2; and BFDs, which link residues i and j ± 3. Formation of these disulfides was initially predicted to be forbidden, producing too much local strain in the protein fold. However, BSDs do exist in nature. Significantly, their high levels of strain allow them to be involved in redox processes under physiological conditions. Here we characterise BSD motifs found in the Protein Data Bank (PDB), discussing important intrinsic factors, such as the disulfide conformation and torsional strain, and extrinsic factors, such as the influence of the β-sheet environment on the disulfide and vice versa. We also discuss the biological importance of BSDs, including the prevalence of non-homologous examples in the PDB, the conservation of BSD motifs amongst related proteins (BSD clusters) and experimental evidence for BSD redox activity. For clusters of homologous BSDs we present detailed data of the disulfide properties and the variations of these properties amongst the “redundant” structures. Identification of disulfides with the potential to be involved in biological redox processes via the analysis of these data will provide important insights into the function and mechanism of BSD-containing proteins. Characterisation of thiol-based redox signalling pathways will lead to significant breakthroughs in understanding the molecular basis of oxidative stress and associated pathways, such as ageing and neurodegenerative diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the structure, thermal property, and ion adsorption of silk particles. The particles were prepared by attritor-bead mill combination, using alkaline (pH10) charge repulsion and surfactant steric repulsion methods. Both methods produced particles with a dominant β-sheet structure, similar to the silk fibre. There was no significant difference in the decomposition temperatures for either the silk fibre or the micro/nano silk particles. An important finding from this study is clear evidence of reduction of amorphous content during the final stage of powdering using the bead mill. As a result, despite reduction in β-sheet crystallites with the progressive milling, the relative β-sheet content actually increased during this process. However, intermolecular forces between the β-sheets reduced significantly and hence the XRD results showed significant reduction in crystallinity in nano silk particles but crystal forming segments remained with β-sheet conformations after milling. The structural change influenced the ion-adsorption property where particle-size reduction resulted in a significant increase in both the rate and volume of HCrO4- adsorption. © 2014 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogels formed by the self-assembly of peptides are promising biomaterials. The bioactive and biocompatible molecule Fmoc-FRGDF has been shown to be an efficient hydrogelator via a π-β self-assembly mechanism. Herein, we show that the mechanical properties and morphology of Fmoc-FRGDF hydrogels can be effectively and easily manipulated by tuning both the final ionic strength and the rate of pH change. The increase of ionic strength, and consequent increase in rate of gelation and stiffness, does not interfere with the underlying π-β assembly of this Fmoc-protected peptide. However, by tuning the changing rate of the system's pH through the use of glucono-δ-lactone to form a hydrogel, as opposed to the previously reported HCl methodology, the morphology (nano- and microscale) of the scaffold can be manipulated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neocarzinostatin (NCS) a potent DNA-damaging, anti-tumor toxin extracted from Streptomyces carzinostaticus that recognizes double-stranded DNA bulge and induces DNA damage. 2 Fluoro (2F) Modified EpCAM RNA aptamer is a 23-mer that targets EpCAM protein, expressed on the surface of epithelial tumor cells. Understanding the interaction between NCS and the ligand is important for carrying out the targeted tumor therapy. In this study, we have investigated the biophysical interactions between NCS and 2-fluro Modified EpCAM RNA aptamer using Circular Dichroism (CD) and Infra-Red (IR) spectroscopy. The aromatic amino acid residues spanning the β sheets of NCS are found to participate in intermolecular interactions with 2 F Modified EpCAM RNA aptamer. In-silico modeling and simulation studies corroborate with CD spectra data. Furthermore, it reinforces the involvement of C and D1 strand of NCS in intermolecular interactions with EpCAM RNA aptamer. This the first report on interactions involved in the stabilization of NCS-EpCAM aptamer complex and will aid in the development of therapeutic modalities towards targeted cancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forbidden disulfides are stressed disulfides found in recognisable protein contexts previously defined as structurally forbidden. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. The meta-stability of forbidden disulfides makes them likely candidates as redox switches. Here we mined the Protein Data Bank for examples of the most common forbidden disulfide, the aCSDn. This is a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen bonded moieties are directed away from each other. We grouped these aCSDns into homologous clusters and performed an extensive physicochemical and informatic analysis of the examples found. We estimated their torsional energies using quantum chemical calculations and studied differences between the preferred conformations of the computational model and disulfides found in solved protein structures to understand the interaction between the forces imposed by the disulfide linkage and typical constraints of the surrounding β-sheet. In particular, we assessed the twisting, shearing and buckling of aCSDn-containing β-sheets, as well as the structural and energetic relaxation when hydrogen bonds in the motif are broken. We show the strong preference of aCSDns for the right-handed staple conformation likely arises from its compatibility with the twist, shear and Cα separation of canonical β-sheet. The disulfide can be accommodated with minimal distortion of the sheet, with almost all the strain present as torsional strain within the disulfide itself. For each aCSDn cluster, we summarise the structural and strain data, taxonomic conservation and any evidence of redox activity. aCSDns are known substrates of thioredoxin-like enzymes. This, together with their meta-stability, means they are ideally suited to biological switching roles and are likely to play important roles in the molecular pathways of oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal diffusivity of silk fibroin films, α = (1.6 ± 0.24) × 10-7 m2 s-1, was measured by a direct contact method. It was shown to be reduced down to ∼1 × 10-7 m2 s-1 in the crystallized phase, consistent with the multi-domain composition of β-sheet assemblies. Crystalline silk with β-sheets was made by dipping into alcohol and was used as a positive electron beam lithography (EBL) resist. It is shown by direct IR imaging of the 1619 cm-1 amide-I CO spectral signature and 3290 cm-1 amide-A N-H stretching band that an e-beam is responsible for unzipping β-sheets, which subsequently results in exposed areas returning to a water soluble state. This makes it possible to develop a water-based biocompatible silk resist and use it in lithography applications. The general principles of protein crystallization, traceable to spectral changes in IR amide bands of silk, can be used as a guide for the creation of new protein EBL resists and to quantify the electron dose required for solubility. Foam formation and laser treatments of silk can provide new approaches in surface functionalization and fabrication of 3D bio-scaffolds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nanofibrillar structures that underpin self-assembling peptide (SAP) hydrogels offer great potential for the development of finely tuned cellular microenvironments suitable for tissue engineering. However, biofunctionalisation without disruption of the assembly remains a key issue. SAPS present the peptide sequence within their structure, and studies to date have typically focused on including a single biological motif, resulting in chemically and biologically homogenous scaffolds. This limits the utility of these systems, as they cannot effectively mimic the complexity of the multicomponent extracellular matrix (ECM). In this work, we demonstrate the first successful co-assembly of two biologically active SAPs to form a coassembled scaffold of distinct two-component nanofibrils, and demonstrate that this approach is more bioactive than either of the individual systems alone. Here, we use two bioinspired SAPs from two key ECM proteins: Fmoc-FRGDF containing the RGD sequence from fibronectin and Fmoc-DIKVAV containing the IKVAV sequence from laminin. Our results demonstrate that these SAPs are able to co-assemble to form stable hybrid nanofibres containing dual epitopes. Comparison of the co-assembled SAP system to the individual SAP hydrogels and to a mixed system (composed of the two hydrogels mixed together post-assembly) demonstrates its superior stable, transparent, shear-thinning hydrogels at biological pH, ideal characteristics for tissue engineering applications. Importantly, we show that only the coassembled hydrogel is able to induce in vitro multinucleate myotube formation with C2C12 cells. This work illustrates the importance of tissue engineering scaffold functionalisation and the need to develop increasingly advanced multicomponent systems for effective ECM mimicry.

STATEMENT OF SIGNIFICANCE: Successful control of stem cell fate in tissue engineering applications requires the use of sophisticated scaffolds that deliver biological signals to guide growth and differentiation. The complexity of such processes necessitates the presentation of multiple signals in order to effectively mimic the native extracellular matrix (ECM). Here, we establish the use of two biofunctional, minimalist self-assembling peptides (SAPs) to construct the first co-assembled SAP scaffold. Our work characterises this construct, demonstrating that the physical, chemical, and biological properties of the peptides are maintained during the co-assembly process. Importantly, the coassembled system demonstrates superior biological performance relative to the individual SAPs, highlighting the importance of complex ECM mimicry. This work has important implications for future tissue engineering studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of hydrogen as a temporary alloying element in titanium alloys is an attractive approach to improve the mechanical properties of the materials, enhance processability and thereby reduce manufacturing costs. In this paper, the hydrogen diffusion process and the phase transformation both between titanium particles and in titanium sheets were computationally simulated to analyze the mechanism of hydrogen diffusion in different phases (α-Ti, β-Ti and TiHx). With the simulation based on the thermodynamics and kinetics, quantitative behaviors of the hydrogen diffusion and the phase transformation were analyzed. The simulation results provide an insight into the diffusion process and improve the fundamental understanding of the mechanism of diffusion and phase transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of hydrogen as a temporary alloying element in Ti alloys is an attractive approach to improve the mechanical properties of the materials, enhance processability and thereby reduce manufacturing costs. In this paper, the hydrogen diffusion process and the phase transformation both between Ti particles and in Ti sheets were simulated to analyze the mechanism of hydrogen diffusion in different phases (α-Ti, β-Ti and TiHx). With the simulation based on the kinetics and thermodynamics, quantitative behaviors of the hydrogen diffusion and the phase transformation were analyzed. The simulation results provide an insight into the diffusion process and improve the fundamental understanding of the mechanism of diffusion and phase transformation.