10 resultados para Autonomous Underwater Vehicle

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research is to model and analyze candidate hull configurations for a low-cost, modular, autonomous underwater robot. As the computational power and speed of microprocessors continue to progress, we are seeing a growth in the research, development, and the utilization of underwater robots. The number of applications is broadening in the R&D and science communities, especially in the area of multiple, collaborative robots. These underwater collaborative robots represent an instantiation of a System of Systems (SoS). While each new researcher explores a unique application, control method, etc. a new underwater robot vehicle is designed, developed, and deployed. This sometimes leads to one-off designs that are costly. One limit to the wide-scale utilization of underwater robotics is the cost of development. Another limit is the ability to modify the configuration for new applications and evolving requirements. Consequently, we are exploring autonomous underwater vehicle (AUV) hull designs towards the goal of modularity, vehicle dexterity, and minimizing the cost. In our analysis, we have employed 3D solid modeling tools and finite element methods. In this paper we present our initial results and discuss ongoing work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated the cooperation of multi underwater robots to perform a task. This combined engineering design, electronics and consensus control to create systems capable of achieving the task. Challenges such as underwater radio communications were researched and a simulation framework was created and tested on virtual and real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A∗-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A∗ approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seafloor habitats on continental shelf margins are increasingly being the subject of worldwide conservation efforts to protect them from human activities due to their biological and economic value. Quantitative data on the epibenthic taxa which contributes to the biodiversity value of these continental shelf margins is vital for the effectiveness of these efforts, especially at the spatial resolution required to effectively manage theseecosystems. We quantified the diversity of morphotype classes on an outcropping reef system characteristic of the continental shelf margin in the Flinders Commonwealth Marine Reserve, southeastern Australia. The system is uniquely characterized by long linear outcropping ledge features in sedimentary bedrock that differ markedly from the surrounding low-profile, sand-inundated reefs. We characterize a reef system harboring rich morphotype classes, with a total of 55 morphotype classes identified from the still images captured by an autonomous underwater vehicle. The morphotype class Cnidaria/Bryzoa/Hydroid matrix dominated the assemblages recorded. Both a and b diversitydeclined sharply with distance from nearest outcropping reef ledge feature. Patterns of the morphotype classes were characterized by (1) morphotype turnover at scales of 5 to 10s m from nearest outcropping reef ledge feature, (2) 30 % of morphotype classes were recordedonly once (i.e. singletons), and (3) generally low levels of abundance (proportion cover) of the component morphotype class. This suggests that the assemblages in this region contain a considerable number of locally rare morphotype classes. This study highlights the particular importance of outcropping reef ledge features in this region, as they provide a refuge against sediment scouring and inundation common on the low profile reef that characterizes this region. As outcropping reef features, they represent a small fraction of overall reef habitat yet contain much of the epibenthic faunal diversity. This study has relevance to conservation planning for continental shelf habitats, as protecting a single, or few, areas of reef is unlikely to accurately represent the geomorphic diversity of cross-shelf habitats and the morphotype diversity that is associated with these features. Equally, whendesigning monitoring programs these spatially-discrete, but biologically rich outcropping reef ledge features should be considered as distinct components in stratified sampling designs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Underwater surveying by swarms of autonomous underwater vehicles presents problems in communication among the robots. These problems involve the bandwidth, power consumption, timing, processing power, and other issues. This paper presents a novel approach to communicate and coordinate effectively among underwater vehicles to accomplish this task successfully. The proposed approach solves issues by reducing the number of hops to conserve power, while reducing computation time and bandwidth, effectively utilizing resources to reduce the load on each node. Finally, the simulation results are presented, in order to prove that the proposed approach improves efficiency and effectiveness in communicating among underwater vehicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a distributed protocol for communication among autonomous underwater vehicles. It is a complementary approach for coordination between the autonomous underwater vehicles. This paper mainly describes different methods for underwater communication. One of the methods is brute force approach in which messages are broadcasted to all the communication nodes, which in turn will broadcast the acknowledgement. Issues relating to this brute force approach are time delay, number of hops, power consumption, message collision and other practical issues. These issues are discussed and solved by proposing a new method to improve efficiency of this proposed approach and its effectiveness in communication among autonomous underwater vehicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order for underwater robots to communicate with land and air based robots on an equal basis, high speed communications is required. If the robots are not to be tethered then wireless communications is the only possibility. Sonar communications is too slow. Unfortunately radio waves are rapidly attenuated under water due to phenomena such as skin depth. These experiments attempt to extend the range of underwater radio communications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we define the terminal attitude of the pursuer with respect to a target and present a LQR and H¿ control approach to solving the problem of pursuer achieving a desired terminal attack/approach angle. The intercept or engagement criteria is defined in terms of both minimizing the miss distance and controlling the pursuer's body attitude with respect to the target at the terminal point. This approach in comparison to previous approaches consider the relativistic approach of the pursuer with respect to the target as opposed the absolute velocities of the two dynamic bodies, and have possible applications ranging from autonomous vehicle entry in to a mother craft to nossle engagements in on-flight refuelling or even in precision missile guidance. Here we also suitably formulate the H¿ control ideas directly applicable to the underlying problem and presents both state feedback and output feed back results for the case of finite horizon and non-zero initial conditions together with a optimal parameter value to achieve a desired terminal characteristic in terms of the original weighting parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a hardware in the loop simulation of our proposed multi-surface sliding control (MSSC) for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). Using MSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. The control law is implemented on an onboard computer and is validated though Hardware-In-the-Loop (HIL) simulations, between the hardware and the flight simulator X-Plane, which simulates the unmanned aircraft dynamics, sensors, and actuators. Simulation results are presented to validate the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments and advances in ground and aerial robotics have presented many end user, 'off the shelf' products for use in areas such as search and rescue, recreation, filming, defense forces and sporting. Advances in underwater robotics however have not yet become as established and widespread as their ground and aerial counterparts, though this field is emerging very quickly. Many underwater robotic vessels are built from expensive, complex components and circuitry which are often tethered to a power source and controlled remotely. This greatly limits their effectiveness and potential range. The Goal was to construct two or more simple robotic fish made from 'off the shelf' products, making use of modern technologies such as 3D printing to assist in the design and manufacture process. And further that each fish is capable of swarming with other fish and interacting with objects in water. Two points of note is the calibration of IR sensors for use underwater and the magnetic coupling of the tail foil to the fish body.