22 resultados para Augmented-wave Method

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb +, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the H - O - H bending mode and the differences in the O - H stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A concrete–steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete–steel interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Timber is one of the most widely used structural material all over the world. Round timbers can be seen as a structural component in historical buildings, jetties, short span bridges and also as piles for foundation and poles for electrical and power distribution. To evaluate the current condition of these cylindrical type timber structures, guided wave has a great potential. However, the difficulties associated with the guided wave propagation in timber materials includes orthotropic behaviour of wood, moisture contents, temperature, grain direction, etc. In addition, the effect of fully or partially filled surrounding media, such as soil, water, etc. causes attenuation on the generated stress wave. In order to investigate the effects of these parameters on guided wave propagation, extensive numerical simulation is required to conduct parametric studies. Moreover, due to the presence of multi modes in guided wave propagation, dispersion curves are of great importance. Even though conventional finite element method (FEM) can determine dispersion curves along with wave propagation in time domain, it is highly computationally expensive. Furthermore, incorporating orthotropic behaviour and surrounding media to model a thick cylindrical wave (large diameter cylindrical structures) make conventional FEM inefficient for this purpose. In contrast, spectral finite element method (SFEM) is a semi analytical method to model the guided wave propagation which does not need fine meshes compared to the other methods, such as FEM or finite difference method (FDM). Also, even distribution of mass and stiffness of structures can be obtained with very few elements using SFEM. In this paper, the suitability of SFEM is investigated to model guided wave propagation through an orthotropic cylindrical waveguide with the presence of surrounding soil. Both the frequency domain analysis (dispersion curves) and time domain reconstruction for a multi-mode generated input signal are presented under different loading location. The dispersion curves obtained from SFEM are compared against analytical solution to verify its accuracy. Lastly, different numerical issues to solve for the dispersion curves and time domain results using SFEM are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The whole-body fatty acid balance method was used to investigate the fatty acid metabolism in Murray cod (Maccullochella peelii peelii) fed diets containing canola (CO) or linseed oil (LO). Murray cod were able to elongate and desaturate both 18 : 2n − 6 and 18 : 3n − 3. In fish fed the CO diet, 54.4% of the 18 : 2n − 6 consumed was accumulated, 38.5% oxidized and 6.4% elongated and desaturated to higher homologs. Fish fed the LO diet accumulated 52.9%, oxidized 37% and elongated and desaturated 8.6% of the consumed 18 : 3n − 3. The overall roles of n − 6 fatty acids appeared more important in Murray cod compared to other freshwater species. Murray cod also showed a preferential order of utilization of C18 fatty acid for energy production (18 : 3n − 3 > 18 : 2n − 6 > 18 : 1n − 9). Moreover, it is demonstrated that an increase in dietary 18 : 3n − 3 is directly responsible of increased desaturase activity and augmented saturated fatty acid accumulation in the fish body. The present study also suggests that, in the context of the possible maximization of the natural ability of fish to produce long chain polyunsaturated fatty acids, the whole-body approach can be considered well suited and informative and Murray cod is a suited candidate to fish oil replacement for its diets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of Lamb wave modes at varying frequencies with a through-thickness crack of different lengths in aluminium plates was analysed in terms of finite element method and experimental study. For oblique-wave incidence, both numerical and experimental results showed that the wave scattering from a crack leads to complicated transmission, reflection and diffraction accompanied by possible wave-mode conversion. A dual-PZT actuation scheme was therefore applied to generate the fundamental symmetrical mode (S0) with enhanced energy to facilitate the identification of crack-scattered wave components. The relationship between crack length and the reflection/transmission coefficient obtained with the aid of the Hilbert transform was established, through which the crack length was quantitatively evaluated. The effects of wavelength of Lamb waves and wave diffraction on the properties of the reflection and transmission coefficients were analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel concept to determine the velocity and the location information of multiple mobile agents using Doppler radar has been introduced. Also, an expression for the minimum number of inline sensors needed to guarantee this estimation for n number of mobile agents has been obtained. Current methods use the time derivative of the displacement of adjacent position measurements to find the velocities of agents. This method is error prone, particularly, if the agents are accelerating. In our approach we incorporate direction-of-arrival (DOA) radar which tracks the location and the velocity of each and every agent in each measurement step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Method of detecting an event in electrical apparatus (146, 148, 150). Electromagnetic radiation from the apparatus, characteristic of the event, is detected. An electrical signal is generated, this representing the electromagnetic radiation. The signal is subjected to non-stationary wave signal analysis to generate an output indicative of the detecting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Method of detecting an event in electrical apparatus (146, 148, 150). Electromagnetic radiation from the apparatus, characteristic of the event, is detected. An electrical signal is generated, this representing the electromagnetic radiation. The signal is subjected to non-stationary wave signal analysis to generate an output indicative of the detecting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a factor-augmented vector autoregressive (FAVAR) model is estimated to characterize the dynamic effects of shocks in the personal income tax rate in the United States on United States and Canadian economies. The representation and the estimate of the FAVAR model is based on Stock and Watson (2005) and the shocks are recovered applying the identification scheme proposed by Bernanke et al. (2005); this method allows impulse response functions to be generated for all the variables in the dataset and provides a description of the domestic and international transmission mechanisms of United States movements in the personal income tax rate. A distinguishing feature of our model is the disaggregation of traded goods sector where imports and exports are disaggregated into 12 and 13 industries, respectively. This provides extra information on the domestic and international transmission mechanism across the two countries. The results show that the FAVAR approach generates a reasonable characterisation of the effects of United States movements in the US personal income tax rate on the United States economy and its transmission to the Canadian economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral element method is very efficient in modelling high-frequency stress wave propagation because it works in the frequency domain. It does not need to use very fine meshes in order to capture high frequency wave energy as the time domain methods do, such as finite element method. However, the conventional spectral element method requires a throw-off element to be added to the structural boundaries to act as a conduit for energy to transmit out of the system. This makes the method difficult to model wave reflection at boundaries. To overcome this limitation, imaginary spectral elements are proposed in this study, which are combined with the real structural elements to model wave reflections at structural boundaries. The efficiency and accuracy of this proposed approach is verified by comparing the numerical simulation results with measured results of one dimensional stress wave propagation in a steel bar. The method is also applied to model wave propagation in a steel bar with not only boundary reflection, but also reflections from single and multiple cracks. The reflection and transmission coefficients, which are obtained from the discrete spring model, are adopted to quantify the discontinuities. Experimental tests of wave propagation in a steel bar with one crack of different depths are also carried out. Numerical simulations and experimental results show that the proposed method is effective and reliable in modelling wave propagation in one-dimensional waveguides with reflections from boundary and structural discontinuities. The proposed method can be applied to effectively model stress wave propagation for structural damage detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep stage identification is the first step in modern sleep disorder diagnostics process. K-complex is an indicator for the sleep stage 2. However, due to the ambiguity of the translation of the medical standards into a computer-based procedure, reliability of automated K-complex detection from the EEG wave is still far from expectation. More specifically, there are some significant barriers to the research of automatic K-complex detection. First, there is no adequate description of K-complex that makes it difficult to develop automatic detection algorithm. Second, human experts only provided the label for whether a whole EEG segment contains K-complex or not, rather than individual labels for each subsegment. These barriers render most pattern recognition algorithms inapplicable in detecting K-complex. In this paper, we attempt to address these two challenges, by designing a new feature extraction method that can transform visual features of the EEG wave with any length into mathematical representation and proposing a hybrid-synergic machine learning method to build a K-complex classifier. The tenfold cross-validation results indicate that both the accuracy and the precision of this proposed model are at least as good as a human expert in K-complex detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effect of various aging environments on the painted surface finish of unidirectional carbon fibre composite laminates, manufactured by autoclave and a novel out-of-autoclave technique was investigated. Laminates were exposed to water immersion, 95 % relative humidity and cyclic environments for 552 h and the surface finish was evaluated using visual and wave-scan distinctness of image (DOI) techniques. It was found that the laminate surface finish was dependent on the amount of moisture in the aging test. Minor surface waviness occurred on the laminates exposed to the cyclic test, whereas, surface waviness, print through and DOI values were all significantly higher as the laminates absorbed larger quantities of moisture from the hygrothermal and hydrothermal tests. The water immersion test, which was the most detrimental to the surface finish of the painted laminates, produced dense blistering on the autoclave manufactured laminate surface whereas the out-of-autoclave laminate surface produced only a few. It was found that the out-of-autoclave laminate had high substrate surface roughness which resulted in improved paint adhesion and, therefore, prevented the formation of surface blistering with aging. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Guided wave (GW) is sensitive to small damage and can propagate a relatively longer distance with relatively less attenuation, GW-based method has been found as an effective and efficient way to detect incipient damages. In this study, a full-scale concrete joint was constructed to further verify the effectiveness of GW-based method on real civil structures. GW tests were conducted in three stages, including baseline, serviceability and damage conditions. The waves are excited by one actuator and received by several sensors, which are made up of independent piezoelectric elements. Experimental results show that the mehod is promising for damage identification in practices.