2 resultados para Astronautics

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores design considerations for energy efficiency in lunar habitats. It considers several previous lunar energy studies in regards to energy types and stages of energy requirements. If we are to obtain true sustainability in energy processes, we will need to design according to the principles “exergy”, considering both the first and the second laws of thermodynamics in a holistic and thorough evaluation of energy capture, transformation, and use. Such an evaluation will ascertain the source of energy, its processing and energy potential stages, as well as the task required. Traditional designs of facility thermal systems are frequently extremely wasteful: they dramatically increase both first costs and operating costs because they treat heating and cooling systems as separate entities, instead of an integrated energy system. Energy processes, the state of energy required to do a particular task, the embodied energy to complete or manufacture an object, and the wasted energy released are all important to conservation and obtaining an efficient and effective use (quality) of energy. If the regulation of energy processes is a concern in terrestrial habitation, it should be even more so for extra-terrestrial habitation where there is little margin for waste of any sort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of a miniature ramjet combustor using gaseous methane fuel for Mach 2.5 has been conducted. The main challenges stem mainly from the insufficient space for mixing and burning, short residence time, and the flame stabilization. Impossible utilization of relatively large air-blast fuel injectors provides more difficulties for the design. The trapped vortex combustor, as a novel way of flameholding by trapping the pilot flame inside a cavity instead of exposing it to the mainstream, is selected. Three main parts are studied numerically, which include the cold flowfield characteristics, the fuel-injection schemes, and the overall combustion performance. The results show that the drag coefficient can helptodetermine the optimum cavity size for trappingastable vortex. Injecting all the fuel inthe cavity always leads to an overly fuel-rich condition, whereas injecting in front of the cavity with a momentum flux ratio q between 0.61 and 1.0 can successfully achieve stoichiometric mixing in the cavity. However, compared to nonreacting fuel mixing, the combustion performance is found to be more sensitive to the value of q. Among the cases studied, the one with a small q of about 0.61 has more intense pilot flames andshorter main combustor flames. The effectsofangled injection, upstream injection location, and the combustor length based on the found q are also investigated.