56 resultados para Aquatic organisms.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Patterns of high biodiversity among less mobile organisms throughout isolated locations suggest that passive dispersal importantly contributes to biodiversity. We examined the contribution of waterbirds to the dispersal of plant seeds and macroinvert

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A portion of all herbicides applied to forests, croplands, road sides, and gardens are inevitably lost to water bodies either directly through runoff or indirectly by leaching through groundwater into ephemeral streams and lakes. Once in the aquatic environment, herbicides may cause stress within aquatic communities and radically alter community structure. Atrazine is one of the most effective and inexpensive herbicides in the world and is consequently used more frequently than any other herbicide. Atrazine is frequently detected in aquatic waters, and has been known to affect reproduction of aquatic flora and fauna, which in turn impacts on the community structure as a whole. This paper presents a summary of the reported direct and indirect impacts of atrazine on aquatic organisms and community structure. The information can be used for developing improved management guidelines and legislation. It is concluded that a single universal maximum limit on the atrazine application in catchments, as suggested by many regulatory authorities, does not provide adequate protection of the aquatic environment. Rather, it is advocated that flexible limits on the application of atrazine be developed in line with the potential risk of contamination to surface and subsurface water and fragility of the aquatic environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many plant seeds and invertebrates can survive passage through the digestive system of birds, which may lead to long distance dispersal (endozoochory) in case of prolonged retention by moving vectors. Endozoochorous dispersal by waterbirds has nowadays been documented for many aquatic plant seeds, algae and dormant life stages of aquatic invertebrates. Anecdotal information indicates that endozoochory is also possible for fully functional, active aquatic organisms, a phenomenon that we here address experimentally using aquatic snails. We fed four species of aquatic snails to mallards (Anas platyrhynchos), and monitored snail retrieval and survival over time. One of the snail species tested was found to survive passage through the digestive tract of mallards as fully functional adults. Hydrobia (Peringia) ulvae survived up to five hours in the digestive tract. This suggests a maximum potential transport distance of up to 300 km may be possible if these snails are taken by flying birds, although the actual dispersal distance greatly depends on additional factors such as the behavior of the vectors. We put forward that more organisms that acquired traits for survival in stochastic environments such as wetlands, but not specifically adapted for endozoochory, may be sufficiently equipped to successfully pass a bird's digestive system. This may be explained by a digestive trade-off in birds, which maximize their net energy intake rate rather than digestive efficiency, since higher efficiency comes with the cost of prolonged retention times and hence reduces food intake. The resulting lower digestive efficiency allows species like aquatic snails, and potentially other fully functional organisms without obvious dispersal adaptations, to be transported internally. Adopting this view, endozoochorous dispersal may be more common than up to now thought.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fish of the genus Gadopsis are a distinctive component of the freshwater fish fauna of south-eastern Australia. Gadopsis marmoratus and G. bispinosus are the only two species recognised within the genus, with the former of uncertain taxonomic status, as it is thought to be composed of at least two distinct geographical forms based on morphological and allozyme data. The objective of this study was to investigate DNA sequence divergence in Gadopsis, especially in the western portion of its distribution, using an approximately 400 base pair fragment of the mitochondrial small subunit 12S rRNA gene region in order to reassess the taxonomy of the genus. Individuals from 11 locations were sequenced and confirm that G. marmoratus and G. bispinosus are genetically distinct, and further that the G. marmoratus complex consists of two divergent clades representing the previously identified northern and southern forms. The degree of divergence between the three Gadopsis clades was similar (5–6% nucleotide substitutions), suggesting that they diverged from a common ancestor at approximately the same period in geological time. These results are consistent with previous allozyme studies and highlight the usefulness of mitochondrial DNA data coupled with allozyme information for clarifying taxonomic boundaries in morphologically conservative aquatic organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australia’s waterbirds are mostly nomadic, capitalising on highly variable aquatic resources in the arid interior (70% of the continent) for feeding and breeding. Waterbirds, unlike most aquatic organisms, can move between catchments, exploiting habitat wherever it occurs. In Australia, patterns of resource availability for waterbirds are mostly pulsed with peaks of productivity, coinciding with flooding and differing in time and space, affecting individuals, species and functional groups of waterbirds. Australian waterbirds are no different from waterbirds elsewhere, with their behaviour reflecting broad-scale resource availability. They respond to changing patterns of resource distribution, with rapid movements at spatial and temporal scales commensurate with the dynamics of the resource. The most serious conservation threat to waterbirds is a bottleneck in resource availability, leading to population declines, increasingly forced by anthropogenic impacts. River regulation and other threats (e.g. draining) reduce the availability of wetland habitat and decrease the probability of viable resource patches. It is axiomatic that waterbirds need water and such population bottlenecks may occur when the availability of water across the continent is limited. The rehabilitation of regulated rivers with environmental flows and protection of naturally flowing rivers in the arid region are essential for long-term sustainability of Australia’s waterbird populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal migrations span the globe, involving immense numbers of individuals from a wide range of taxa. Migrants transport nutrients, energy, and other organisms as they forage and are preyed upon throughout their journeys. These highly predictable, pulsed movements across large spatial scales render migration a potentially powerful yet underappreciated dimension of biodiversity that is intimately embedded within resident communities. We review examples from across the animal kingdom to distill fundamental processes by which migratory animals influence communities and ecosystems, demonstrating that they can uniquely alter energy flow, food-web topology and stability, trophic cascades, and the structure of metacommunities. Given the potential for migration to alter ecological networks worldwide, we suggest an integrative framework through which community dynamics and ecosystem functioning may explicitly consider animal migrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Disturbance and anthropogenic land use changes are usually considered to be key factors facilitating biological invasions. However, specific comparisons of invasion success between sites affected to different degrees by these factors are rare.

2. In this study we related the large-scale distribution of the invading New Zealand mud snail (Potamopyrgus antipodarum) in southern Victorian streams, Australia, to anthropogenic land use, flow variability, water quality and distance from the site to the sea along the stream channel.

3. The presence of P. antipodarum was positively related to an index of flow-driven disturbance, the coefficient of variability of mean daily flows for the year prior to the study.

4. Furthermore, we found that the invader was more likely to occur at sites with multiple land uses in the catchment, in the forms of grazing, forestry and anthropogenic developments (e.g. towns and dams), compared with sites with low-impact activities in the catchment. However, this relationship was confounded by a higher likelihood of finding this snail in lowland sites close to the sea.

5. We conclude that P. antipodarum could potentially be found worldwide at sites with similar ecological characteristics. We hypothesise that its success as an invader may be related to an ability to quickly re-colonise denuded areas and that population abundances may respond to increased food resources. Disturbances could facilitate this invader by creating spaces for colonisation (e.g. a possible consequence of floods) or changing resource levels (e.g. increased nutrient levels in streams with intense human land use in their catchments).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two clusters of coastal lagoons, one near Strahan on Tasmania's west coast, the other near St Helens on the north-east coast, are the prime known epicentres of novelty and endemism in the Australian freshwater algal flora. The algae inhabiting these acid, dystrophic lagoons have a very limited distribution. Other dystrophic lagoons may have one or two, but not all, of this suite of endemics. The Strahan dune lakes, especially Lake Garcia, also have the greatest microfaunal diversity yet recorded from any Tasmanian waterbody, including several endemic species. The St Helens sites are less rich in species of microfauna, perhaps because of climatic differences or perhaps because of less intensive sampling there, but they, too, contain endemic taxa. The lagoons in both areas lie outside the formal protection of national parks, but present land management does provide a measure of protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminarinase and endo-β-1,4-glucanase were purified and characterised from the midgut gland of the herbivorous land crab Gecarcoidea natalis and the crayfish Cherax destructor. The laminarinase isolated from G. natalis was estimated to have a molecular mass of 41 kDa by SDS-PAGE and 71 kDa by gel filtration chromatography. A similar discrepancy was noted for C. destructor. Possible reasons for this are discussed. Laminarinase (EC 3.2.1.6) from G. natalis had a Vmax of 42.0 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.126% (w/v) and an optimum pH range of 5.5–7, and hydrolysed mainly β-1,3-glycosidic bonds. In addition to the hydrolysis of β-1,3-glycosidic bonds, laminarinase (EC 3.2.1.39) from C. destructor was capable of significant hydrolysis of β-1,4-glycosidic bonds. It had a Vmax of 19.6 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.059% (w/v) and an optimum pH of 5.5. Laminarinase from both species produced glucose and other short oligomers from the hydrolysis of laminarin. Endo-β-1,4-glucanase (EC 3.2.1.4) from G. natalis had a molecular mass of 52 kDa and an optimum pH of 4–7. It mainly hydrolysed β-1,4-glycosidic bonds, but was also capable of significant hydrolysis of β-1,3-glycosidic bonds. Two endo-β-1,4-glucanases, termed 1 and 2, with respective molecular masses of 53±3 and 52 kDa, were purified from C. destructor. Endo-β-1,4-glucanase 1 was only capable of hydrolysing β-1,4-glycosidic bonds and had an optimum pH of 5.5. Endo-β-1,4-glucanases from both species produced some glucose, cellobiose and other short oligomers from the hydrolysis of carboxymethyl cellulose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Large amounts of terrestrial detritus enter many low-order forested streams, and this organic
material is often the major basal resource in the metazoan food webs of such systems. However,
despite their apparently low biomass, algae are the dominant food of organisms in a number of
aquatic communities which conventionally would have been presumed to be dependent on
allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams
in arid Australia.
2. The dual stable isotope signatures (d13C and d15N) of potential primary food sources were
compared with the isotopic signatures of common aquatic animals in lowland intermittent
streams in south-eastern Australia, in both spring and summer, to determine whether
allochthonous detritus was an important nutritional resource in these systems. The isotopic
signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and
Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the
study reaches. The isotopic signatures of biofilm were more spatially and temporally variable
than those of the other basal resources.
3. Despite allochthonous detritus having relatively high C : N ratios compared to other
potential basal resources, results from ISOSOURCE mixing model calculations demonstrated
that this detritus, and the associated biofilm, were the major energy sources assimilated by
macroinvertebrate primary consumers in both spring and summer. The importance of these
energy sources was also reflected in animals higher in the food web, including predatory
macroinvertebrates and fish. These resources were supplemented by autochthonous sources of
higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low
C : N ratios) when they became more prolific as the streams dried to disconnected pools in
summer.
4. The results highlight the importance of allochthonous detritus (particularly from Eucalyptus)
as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent
streams of south-eastern Australia. This contrasts with previous stable isotope studies
conducted in lowland intermittent streams in arid Australia, which have reported that the fauna
are primarily dependent on autochthonous algae.