17 resultados para Approximation diophantienne simultanée

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for monotone approximation of scattered data often arises in many problems of regression, when the monotonicity is semantically important. One such domain is fuzzy set theory, where membership functions and aggregation operators are order preserving. Least squares polynomial splines provide great flexbility when modeling non-linear functions, but may fail to be monotone. Linear restrictions on spline coefficients provide necessary and sufficient conditions for spline monotonicity. The basis for splines is selected in such a way that these restrictions take an especially simple form. The resulting non-negative least squares problem can be solved by a variety of standard proven techniques. Additional interpolation requirements can also be imposed in the same framework. The method is applied to fuzzy systems, where membership functions and aggregation operators are constructed from empirical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming problem. Estimation of the unknown Lipschitz constant from the data by sample splitting and cross-validation is described. Extension of the method for locally Lipschitz functions is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregation operators model various operations on fuzzy sets, such as conjunction, disjunction and aver aging. The choice of aggregation operators suitable for a particular problem is frequently done by fitting the parameters of the operator to the observed data. This paper examines fitting general aggregation operators by using a new method of Lipschitz approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximation order is an important feature of all wavelets. It implies that polynomials up to degree p−1 are in the space spanned by the scaling function(s). In the scalar case, the scalar sum rules determine the approximation order or the left eigenvectors of the infinite down-sampled convolution matrix H determine the combinations of scaling functions required to produce the desired polynomial. For multi-wavelets the condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors of the matrix Hf; a finite portion of H determines the combinations of scaling functions that produce the desired superfunction from which polynomials of desired degree can be reproduced. The superfunctions in this work are taken to be B-splines. However, any refinable function can serve as the superfunction. The condition of approximation order is derived and new, symmetric, compactly supported and orthogonal multi-wavelets with approximation orders one, two, three and four are constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Least squares polynomial splines are an effective tool for data fitting, but they may fail to preserve essential properties of the underlying function, such as monotonicity or convexity. The shape restrictions are translated into linear inequality conditions on spline coefficients. The basis functions are selected in such a way that these conditions take a simple form, and the problem becomes non-negative least squares problem, for which effecitive and robust methods of solution exist. Multidimensional monotone approximation is achieved by using tensor-product splines with the appropriate restrictions. Additional inter polation conditions can also be introduced. The conversion formulas to traditional B-spline representation are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

k-nearest neighbors (kNN) is a popular method for function approximation and classification. One drawback of this method is that the nearest neighbors can be all located on one side of the point in question x. An alternative natural neighbors method is expensive for more than three variables. In this paper we propose the use of the discrete Choquet integral for combining the values of the nearest neighbors so that redundant information is canceled out. We design a fuzzy measure based on location of the nearest neighbors, which favors neighbors located all around x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence has become a widely used technique for applications in noninvasive diagnostic tissue spectroscopy. The standard model used for characterizing fluorescence photon transport in biological tissue is based on the diffusion approximation. On the premise that the total energy of excitation and fluorescent photon flows must be conserved, we derive the widely used diffusion equations in fluorescence spectroscopy and show that there must be an additional term to account for the transport of fluorescent photons. The significance of this additional term in modeling fluorescence spectroscopy in biological tissue is assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monotonicity preserving interpolation and approximation have received substantial attention in the last thirty years because of their numerous applications in computer aided-design, statistics, and machine learning [9, 10, 19]. Constrained splines are particularly popular because of their flexibility in modeling different geometrical shapes, sound theoretical properties, and availability of numerically stable algorithms [9,10,26]. In this work we examine parallelization and adaptation for GPUs of a few algorithms of monotone spline interpolation and data smoothing, which arose in the context of estimating probability distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite several years of research, type reduction (TR) operation in interval type-2 fuzzy logic system (IT2FLS) cannot perform as fast as a type-1 defuzzifier. In particular, widely used Karnik-Mendel (KM) TR algorithm is computationally much more demanding than alternative TR approaches. In this work, a data driven framework is proposed to quickly, yet accurately, estimate the output of the KM TR algorithm using simple regression models. Comprehensive simulation performed in this study shows that the centroid end-points of KM algorithm can be approximated with a mean absolute percentage error as low as 0.4%. Also, switch point prediction accuracy can be as high as 100%. In conjunction with the fact that simple regression model can be trained with data generated using exhaustive defuzzification method, this work shows the potential of proposed method to provide highly accurate, yet extremely fast, TR approximation method. Speed of the proposed method should theoretically outperform all available TR methods while keeping the uncertainty information intact in the process.