13 resultados para Anser brachyrhynchus

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During four breeding seasons, 2003–2006, we studied the relationship between snow cover and nesting performance in pink-footed geese (Anser brachyrhynchus) in a key breeding site on Svalbard. Snow cover in late May, i.e., at the time of egg laying of geese, was derived from MODIS satellite images. Snow cover had a profound cascading effect on reproductive output via the number of nesting pairs and timing of nesting, which affected nest success, while there was only a tendency for a negative effect on clutch size. Hence, we estimated a five-fold difference in the number of young produced (to post-hatching) between years with little snow and years with high snow cover. The results from the study area correlated with whole-population productivity estimates recorded in autumn. Thus, snow cover derived from MODIS satellite images appears to provide a useful indicator of the breeding conditions in the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-distance bird migration consists of several flight episodes interrupted by a series of resting and refuelling periods on stopover sites. We assessed the role of food availability as the determinant of staging decisions focusing on the following three aspects of food availability: intake rates, stochasticity in intake rates and onset of spring. Using stochastic dynamic modelling, we investigated their impact on staging times and expected fitness. Subsequently, we compared relations in the use of the stopover sites as predicted by the model with empirical data of the Svalbard-breeding population of Pink-footed Goose Anser brachyrhynchus collected in the period 1990–2002. Our results indicate that, for the case of Pink-footed Geese, spring phenology determines a major part of the migration schedule. In contrast to our expectations, intake rates were generally only of minor importance; however, when approaching the breeding grounds their significance increased. Expected fitness at arrival on the breeding grounds showed that the geese can compensate for changes in a broad range of food availability and also cope with varying degrees of stochasticity. However, declining intake rates at the last stopover site or very late onsets of spring clearly decreased fitness. As predicted by the model, the use of stopover sites was interdependent – from empirical data we derived negative relationships between the staging durations of subsequent sites. These results lend credit to an integrated spatially explicit approach focussing on multiple stopover site characteristics when attempting to improve our understanding of bird migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An abdominal profile index (API) was developed for pink-footed geese Anser brachyrhynchus as a measure of body condition. On basis of carcass analysis of 56 adult geese with known API prior to collection, we found significant linear relationships between API against body mass, abdominal fat and total energy content. Hence, changes in API reflect net energy intake rates. As an example of the applicability of the calibration, we compared APIs of individually marked geese before and after long migration episodes and estimated the cost of flight at 8.9 kJ/km. In addition we estimated gain rates at three major staging sites along the spring flyway indicating an increase in fueling rates with latitude. Calibration of APIs and energy contents offers new opportunities for field studies of waterfowl energetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decisions taken during migration can have a large effect on the fitness of birds. Migration must be accurately timed with food availability to allow efficient fueling but is also constrained by the optimal arrival date at the breeding site. The decision of when to leave a site can be driven by energetics (sufficient body stores to fuel flight), time-related cues (internal clock under photoperiodic control), or external cues (temperature, food resources). An individual based model (IBM) that allows a mechanistic description of a range of departure decision rules was applied to the spring migration of pink-footed geese (Anser brachyrhynchus) from wintering grounds in Denmark to breeding grounds on Svalbard via 2 Norwegian staging sites. By comparing predicted with observed departure dates, we tested 7 decision rules. The most accurate predictions were obtained from a decision rule based on a combination of cues including the amount of body stores, date, and plant phenology. Decision rules changed over the course of migration with the external cue decreasing in importance and the time-related cue increasing in importance for sites closer to breeding grounds. These results are in accordance with descriptions of goose migration, following the “green-wave”: Geese track the onset of plant growth as it moves northward in spring, with an uncoupling toward the end of the migration if time is running out. We demonstrate the potential of IBMs to study the possible mechanisms underlying stopover ecology in migratory birds and to serve as tools to predict consequences of environmental change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. How climatic changes affect migratory birds remains difficult to predict because birds use multiple sites in a highly interdependent manner. A better understanding of how conditions along the flyway affect migration and ultimately fitness is of paramount interest.

2. Therefore, we developed a stochastic dynamic model to generate spatially and temporally explicit predictions of stop-over site use. For each site, we varied energy expenditure, onset of spring, intake rate and day-to-day stochasticity independently. We parameterized the model for the migration of pink-footed goose Anser brachyrhynchus from its wintering grounds in Western Europe to its breeding grounds on Arctic Svalbard.

3. Model results suggested that the birds follow a risk-averse strategy by avoiding sites with comparatively high energy expenditure or stochasticity levels in favour of sites with highly predictable food supply and low expenditure. Furthermore, the onset of spring on the stop-over sites had the most pronounced effect on staging times while intake rates had surprisingly little effect.

4. Subsequently, using empirical data, we tested whether observed changes in the onset of spring along the flyway explain the observed changes in migration schedules of pink-footed geese from 1990 to 2004. Model predictions generally agreed well with empirically observed migration patterns, with geese leaving the wintering grounds earlier while considerably extending their staging times in Norway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. We adopt a ‘whole flyway’ approach to modelling scenarios for protecting migratory birds, aiming at efficient and cost-effective conservation of flyway habitat.

2. We developed a model to minimize flyway management costs while safeguarding a migrating bird population. The model assumes that the intensity of the birds’ use of sites can be manipulated by varying management regimes (with concomitant costs) and that the birds make optimal use of the conditions created along their flyway.

3. We used dynamic programming to find the sequence of migratory decisions that maximizes the fitness of the migrants given a range of management scenarios, followed by a management cost estimate of all these scenarios and selection of those scenarios yielding an optimal solution from both an economic and the migrants’ perspective.

4. Using the population of pink-footed geese Anser brachyrhynchus that breed in Svalbard as an example, we calculated that the cheapest management scenario given current compensation payment rates at the various goose stopover sites yielded a 35% cost saving over current management. This cheapest scenario provides a migration itinerary that is very similar to the current itinerary used by the geese. This is fortuitous since changing environmental conditions may put the migrants at risk.

5. Synthesis and application. Given the global threats to migratory birds, developing a framework for efficient and effective conservation of flyway habitat is an urgent need. Such a framework may likewise be used to assist in controlling migrants causing conflict with agriculture, such as several goose species, in an economic and responsible fashion. Our suggested exemplified framework identified large unexplainable differences in management costs between regions. Differences in management costs between staging sites for birds make big differences to the optimal management of a flyway. Hence, to achieve efficient and effective management of migratory birds, we firstly need an objective assessment of the cost of management in different locations, followed by a modelling approach as here advocated, and followed up by a collaborative action of managers along the entire flyway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. For migratory birds the implications of environmental change may be difficult to predict because they use multiple sites during their annual cycle. Moreover, the migrants’ use of these sites may be interdependent. Along the flyway of the Svalbard pink-footed goose Anser brachyrhynchus population, Norwegian farmers use organized scaring to minimize goose use of their grasslands in spring. We assessed the consequences of this practice for regional site use of pink-footed geese along their spring migration route.

2. We used dynamic programming to find the sequence of migratory decisions that maximizes the fitness of female geese during spring migration, assuming scaring impinges on both food-intake rates and predation risk. The parameterization of the model was based on data gathered from individually marked pink-footed geese between 1991 and 2003.

3. The effect of scaring in terms of fitness and site use was most noticeable regarding food-intake rate. Scaring resulted in a redistribution of geese along the flyway. Furthermore, the outcomes of the modelling exercises were highly dependent on whether or not the geese were omniscient or naive: at moderate scaring levels naive geese were predicted to succumb.

4. On a qualitative basis there was good correspondence between the predictions from the model and the empirical evidence gathered to date.

5. Synthesis and applications. Besides highlighting the importance of learning and changing behaviour in an adaptive fashion, our modelling exercise indicated the potential vulnerability of the geese to abrupt environmental change. In addition, the exercise emphasized the interdependence of site use along the migratory flyway. The model supports the necessity for an integrated flyway management approach. In Norway, discussion is ongoing about the future management of the spring conflict between farming interests and geese. Farmers in north and mid-Norway have announced that they will expand the scaring campaign if a long-term solution, including a compensation scheme, is not forthcoming. If scaring on such a large scale is implemented abruptly, it may have severe consequences for the population: management of both the scaring intensity and its geographical extent is urgently required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Waterbirds are considered to import large quantities of nutrients to freshwater bodies but quantification of these loadings remains problematic. We developed two general models to calculate such allochthonous nutrient inputs considering food intake, foraging behaviour and digestive performance of waterbirds feeding in terrestrial habitats: an intake model (IM), mainly based on an allometric relationship for energy requirements and a dropping model (DM), based on allometric relationships for defaecation.

2. Reviewed data of nitrogen (N) and phosphorus (P) content of herbivorous food varied according to diet type (foliage, seeds and roots), season and fertilization. For model parameterization average foliage diet contained 38.20 mg N g−1 and 3.21 mg P g−1 (dry weight), whereas mean faeces composition was 45.02 mg N g−1 and 6.18 mg P g−1.

3. Daily allochthonous nutrient input increased with body mass ranging from 0.29 g N and 0.03 g P in teals Anas crecca to 5.69 g N and 0.57 g P in mute swans Cygnus olor. Results from IM differed from those of DM from ducks to swans by 63–108% for N and by −4 to 23% for P. Model uncertainty was lowest for the IM and mainly caused by variation in estimates of food retention time (RT). In DM food RT and dropping mass determined model uncertainty in similar extent.

4. Exemplarily applying the models to Dutch wetlands resulted in mean annual contribution of herbivorous waterbirds to allochthonous nutrient loading of 382.8 ± 167.1 tonnes N a−1and 34.7 ± 2.3 tonnes P a−1, respectively, which corresponds to annual surface-water loadings of 1.07 kg N ha−1 and 0.10 kg P ha−1.

5. There was a distinct seasonal pattern with peak loadings in January, when bird abundances were highest. Lowest inputs were in August, when bird abundance and nutrient content in food was low and birds foraged less in terrestrial habitats. Three-quarters of all nutrient input was contributed by greater white-fronted goose Anser albifrons, greylag goose Anser anser, wigeon Anas penelope and barnacle goose Branta leucopsis alone.

6. We provide general, easy to use calculation methods for the estimation of allochthonous nutrient inputs by waterbirds, which are applicable to a range of waterbird species, a variety of potential diets and feeding behaviours, and across spatial scales. Such tools may greatly assist in the planning and execution of management actions for wetland nutrient budgets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Habitat heterogeneity and predator behaviour can strongly affect predator–prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey.

2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs.

3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs.

4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3·5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators.

5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes.

6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food-hoarding animals are expected to preferentially cache items with lower perishability and/or higher consumption time. We observed arctic foxes (Alopex lagopus) foraging in a greater snow goose (Anser caerulescens atlanticus) colony where the main prey of foxes consisted of goose eggs, goslings, and lemmings (Lemmus and Dicrostonyx spp.). We recorded the number of prey consumed and cached and the time that foxes invested in these activities. Foxes took more time to consume a goose egg than a lemming or gosling but cached a greater proportion of eggs than the other prey type. This may be caused by the eggshell, which presumably decreases the perishability and/or pilfering risk of cached eggs, but also increases egg consumption time. Arctic foxes usually recached goose eggs but rarely recached goslings or lemmings. We tested whether the rapid-sequestering hypothesis could explain this recaching behavior. According to this hypothesis, arctic foxes may adopt a two-stage strategy allowing both to maximize egg acquisition rate in an undefended nest and subsequently secure eggs in potentially safer sites. Foxes spent more time carrying an egg and traveled greater distances when establishing a secondary than a primary cache. To gain further information on the location and subsequent fate of cached eggs, we used dummy eggs containing radio transmitters. Lifespan of primary caches increased with distance from the goose nest. Secondary caches were generally located farther from the nest and had a longer lifespan than primary caches. Behavioral observations and the radio-tagged egg technique both gave results supporting the rapid-sequestering hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competition may occur when two species with similar feeding ecologies exploit the same limited resources in time and space. In recent years, the Eastern Tundra Bean Goose Anser fabalis serrirostris and Greater White-fronted Goose Anser albifrons frontalis have increased in wintering numbers at Shengjin Lake, China. To examine the potential for coexistence and possible avoidance strategies, we studied (1) their habitat use, (2) foraging behaviours and (3) diets of birds foraging in mixed- and single-species flocks. Both species extensively exploited sedge meadows, where they showed considerable overlap in spatial distribution and diet. The percentage feeding time and diet of both species were unaffected by the presence of the other. Greater White-fronted Geese appeared diurnal sedge meadow specialists, almost never feeding in other habitats. Eastern Tundra Bean Geese were less selective, exploiting other habitats, which they increasingly exploited at night in mid-winter. The use of alternative habitats and night feeding may have avoided interspecific competition. While the specialised feeding ecology of Greater White-fronted Geese may make them particularly vulnerable to loss of sedge meadow habitat, Eastern Tundra Bean Geese may be able to adjust because of their use of alternative habitats and a less restricted diet.