37 resultados para Anode

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A MoO3-carbon nanocomposite was synthesized from a mixture of MoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g-1 in a mixture of MoO3 and graphite (1:1 by weight), and the stable capacity of 700 mA h g-1 (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO3-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO3-carbon nanocomposite are attractive in respect to those of the reported MoO3 electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance Rct of NiCo2O4 are 6.8 and 63.5 Ω, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Ω). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g−1 was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g−1 at 1 C, 2 C, 6 C 50 C and 110 C, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials that alloy with lithium (Si, Ge, Sn, Sb, and P) are considered as alternatives to graphitic anodes in lithium-ion batteries. Their practical use is precluded by large volume changes (200–370%) during cycling. Embedding nanoparticles into carbon is being investigated as a way to tackle that, and ball milling is emerging as a technique to prepare nanocomposites with enhanced capacity and cyclic stability. Using Sb as a model system, we investigate the preparation of Sb–carbon nanocomposites using a reconfigurable ball mill. Four distinctive milling modes are compared. The structure of the composites varies depending on the mode. Frequent strong ball impacts are required for the optimal electrochemical performance of the nanocomposite. An outstanding stable capacity of 550 mA h g−1 for 250 cycles at a current rate of 230 mA g−1 is demonstrated in a thin electrode (1 mg cm−2) and a capacity of [similar]400 mA h g−1 can be retained at 1.15 A g−1. Some capacity fade is observed in a thicker electrode (2.5 mg cm−2), i.e. the performance is sensitive to mass loading. The electrochemical stability originates from the nanocomposite structure containing Sb nanoparticles (5–15 nm) dispersed in a carbon component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemiluminescence, the production of light from a chemical reaction, has found widespread use in analytical chemistry. Both tris (2, 2’-bipyridyl) ruthenium (II) and acidic potassium permanganate are chemiluminescence reagents that have been employed for the determination of a diverse range of analytes. This thesis encompasses some fundamental investigations into the chemistry and spectroscopy of these chemiluminescence reactions as well as extending the scope of their analytical applications. Specifically, a simple and robust capillary electrophoresis chemiluminescence detection system for the determination of codeine, O6-methylcodeine and thebaine is described, based upon the reaction of these analytes with chemically generated tris(2,2'-bipyridyl)ruthenium(III) prepared in sulfuric acid (0.05 M). The reagent solution was contained in a glass detection cell, which also held both the capillary and the cathode. The resultant chemiluminescence was monitored directly using a photomultiplier tube mounted flush against the base of the detection cell. The methodology, which incorporated a field amplification sample introduction procedure, realised detection limits (3a baseline noise) of 5 x 10~8 M for both codeine and O6-methylcodeine and 1 x 10~7 M for thebaine. The relative standard deviations of the migration times and the peak areas for the three analytes ranged from 2.2 % up to 2.5 % and 1.9 % up to 4.6 % respectively. Following minor instrumental modifications, morphine, oripavine and pseudomorphine were determined based upon their reaction with acidic potassium permanganate in the presence of sodium polyphosphate. To ensure no migration of the permanganate anion occurred, the anode was placed at the detector end whilst the electroosmotic flow was reversed by the addition of hexadimethrine bromide (0.001% m/v) to the electrolyte. The three analytes were separated counter to the electroosmotic flow via their interaction with a-cyclodextrin. The methodology realised detection limits (3 x S/N) of 2.5 x 10~7 M for both morphine and oripavine and 5 x 10~7 M for pseudomorphine. The relative standard deviations of the migration times and the peak heights for the three analytes ranged from 0.6 % up to 0.8 % and 1.5% up to 2.1 % respectively. Further improvements were made by incorporating a co-axial sheath flow detection cell. The methodology was validated by comparing the results realised using this technique with those obtained by high performance liquid chromatography (HPLC), for the determination of both morphine and oripavine in seven industrial process liquors. A complimentary capillary electrophoresis procedure with UV-absorption detection was also developed and applied to the determination of morphine, codeine, oripavine and thebaine in nine process liquors. The results were compared with those achieved using a standard HPLC method. Although over eighty papers have appeared in the literature on the analytical applications of acidic potassium permanganate chemiluminescence, little effort has been directed towards identifying the origin of the luminescence. It was found that chemiluminescence was generated during the manganese(III), manganese(IV) and manganese(VII) oxidations of sodium borohydride, sodium dithionite, sodium sulfite and hydrazine sulfate in acidic aqueous solution. From the corrected chemiluminescence spectra, the wavelengths of maximum emission were 689 ± 5 nm and 734 ± 5 nm when the reactions were performed in sodium hexametaphosphate and sodium dihydrogenorthophosphate or orthophosphoric acid environments respectively. The corrected phosphorescence spectrum of manganese(II) sulfate in a solution of sodium hexametaphosphate at 77 K, exhibited two peaks with maxima at 688 nm and 730 nm. The chemical and spectroscopic evidence presented strongly supported the postulation that the emission was an example of solution phase chemically induced phosphorescence of manganese(II). Thereby confirming earlier predictions that the chemiluminescence from acidic potassium permanganate reactions originated from an excited manganese(II) species. Additionally, these findings have had direct analytical application in that manganese(IV) was evaluated as a new reagent for chemiluminescence detection. The oxidations of twenty five organic and inorganic species, with solublised manganese(IV), were found to elicit analytically useful chemiluminescence with detection limits (3 x S/N) for Mn(II), Fe(II), morphine and codeine of 5 x 10-8 M, 2.5 x 10-7 M, 7.5 x 10-8 M and 5 x 10-8M, respectively. The corrected emission spectra from four different analytes gave wavelengths of maximum emission in the range from 733 nm up to 740 nm indicating that these chemiluminescence reactions also shared a common emitting species, excited manganese(II). Whilst several analytical problems were addressed in this thesis and answers to certain questions regarding the fundamentals of acidic potassium permanganate chemiluminescence were proposed, there are several areas that would benefit from further research. These are outlined in the final chapter of this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rechargeable lithium batteries have long been considered an attractive alternative power source for a wide variety of applications. Safety and stability1 concerns associated with solvent-based electrolytes has necessitated the use of lithium intercalation materials (rather than lithium metal) as anodes, which decreases the energy storage capacity per unit mass. The use of solid lithium ion conductors - based on glasses, ceramics or polymers - as the electrolyte would potentially improve the stability of a lithium metal anode while alleviating the safety concerns. Glasses and ceramics conduct via a fast ion mechanism, in which the lithium ions move within an essentially static framework. In contrast, the motion of ions in polymer systems is similar to that in solvent-based electrolytes - motion is mediated by the dynamics of the host polymer, thereby restricting the conductivity to relatively low values. Moreover, in the polymer systems, the motion of the lithium ions provides only a small fraction of the overall conductivity2, which results in severe concentration gradients during cell operation, causing premature failure3. Here we describe a class of materials, prepared by doping lithium ions into a plastic crystalline matrix, that exhibit fast lithium ion motion due to rotational disorder and the existence of vacancies in the lattice. The combination of possible structural variations of the plastic crystal matrix and conductivities as high as 2 3 1024 S cm21 at 60 8C make these materials very attractive for secondary battery applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stable magnesium battery has been developed based on a magnesium anode, a poly(dioxyethane thiophene) (PEDOT) cathode and a near-saturated aqueous solution of LiCl, MgCl2, or mixture of these salts at pH of 11. This combination leads to a low water activity in the electrolyte, which thus suppresses the hydrogen evolution reaction on Mg, as well as producing a stable oxy-hydroxide film which protects the metal surface from freely corroding. The conducting polymer cathode is reduced somewhat during the discharge process, however, appears to be readily re-oxidised (as determined from the resistance) by the oxygen present in the cell. The cell is therefore primarily a Mg/O2 battery, however, the PEDOT appears to enhance the performance, in particular the discharge voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-stage procedure of ball milling and annealing in air represents a prospective method of preparing nanorods of V2O5 with electrochemical properties suitable for the application in lithium-ion batteries. Commercially purchased V2O5 powder is milled in a ball mill as the first step of the synthesis. The as-milled precursor is subsequently annealed in air to produce the morphology of nanorods via solid-state recrystallization. We have recently investigated intermediate stages of the formation of nanorods, and this paper summarizes the synthesis method including the description of the current understanding of the growth mechanism. The obtained V2O5 nanorods have been assessed as an electrode material for both anodes and cathodes of lithium-ion batteries. When used in cathodes, the nanorods demonstrate a better retention of capacity upon cycling than that of the commercially available powder of V2O5. When used in anodes, the performances of nanorods and the reference V2O5 powder are similar to a large extent, which is related to a different operating mechanism of V2O5 in anodes. The experimentally observed capacity of V2O5 nanorods in an anode has stabilized at the level of about 450 mAh/g after few cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study characterizes BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) perovskite oxide and evaluates it as a potential cathode material for proton-conducting SOFCs with a BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. A four-probe DC conductivity measurement demonstrated that BCFN has a modest electrical conductivity of 2–15 S cm−1 in air with p-type semiconducting behavior. An electrical conductivity relaxation test showed that BCFN has higher Dchem and Kchem than the well-known Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxide. In addition, it has relatively low thermal expansion coefficients (TECs) with values of 18.2 × 10−6 K−1 and 14.4 × 10−6 K−1 at temperature ranges of 30–900 °C and 30–500 °C, respectively. The phase reaction between BCFN and BZCY was investigated using powder and pellet reactions. EDX and XRD characterizations demonstrated that BCFN had lower reactivity with the BZCY electrolyte than strontium-containing perovskite oxides such as SrCo0.9Nb0.1O3-δ and Ba0.6Sr0.4Co0.9Nb0.1O3−δ. The impedance of BCFN was oxygen partial pressure dependent. Introducing water into the cathode atmosphere reduced the size of both the high-frequency and low-frequency arcs of the impedance spectra due to facilitated proton hopping. The cathode polarization resistance and overpotential at a current density of 100 mA cm−2 were 0.85 Ω cm−2 and 110 mV in dry air, which decreased to 0.43 Ω cm−2 and 52 mV, respectively, in wet air (∼3% H2O) at 650 °C. A decrease in impedance was also observed with polarization time; this was possibly caused by polarization-induced microstructure optimization. A promising peak power density of ∼585 mW cm−2 was demonstrated by an anode-supported cell with a BCFN cathode at 700 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the magneto-hydrodynamic forces generated due to the external magnetic field and current density distribution within the cell (current in cell linings) is important in the optimization of cell dynamics. It is well documented that these factors play a crucial role in establishing the metal-pad stability of the cell. Conventional cells use the cathode-collector-bar assembly to carry the current through molten aluminium, the cathode and the steel collector-bar to nearest external bus. The electrical conductivity of the steel is so poor relative to the molten aluminium that the outer third of the collector bar carries the maximum load, which in turn increases the horizontal components of the current within the cell. Previous studies have modelled improvement in the cell instability through external magnetic compensation by redistributing current in the cathode busbar. Very little to date has been published on work to improve the current distribution within the cell. In this work, the current distribution in an aluminium electrolysis cell with copper collector-bar was predicted using finite element modelling. A 2D cross-section of a commercial cell was used under steady conditions of electrical fields in anode, electrolyte, molten aluminium and copper cathode-assembly. Different shapes and sizes of the cathode assembly are also considered to optimise the distribution of current throughout the cathode lining. The findings indicated that the copper-bar of similar size to steel could save voltage up to 150 mV. There is a reduction of more than 70% in peak current density value due to the copper inserts. The predicted trends of current distribution show a good agreement with previously published data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and characterisation of nanorods of vanadium pentoxide, V(2)O(5), vanadium trioxide, V(2)O(3), vanadium dioxide, VO(2)(B), and vanadium nitride, VN, are presented, and their application in electrochemical supercapacitors and lithium-ion batteries is outlined. Specifically, a novel method for the preparation of V(2)O(5) nanorods is discussed. It involves ball milling as a first step and controlled annealing as a second step. Nanorods of V(2)O(5) can be converted into those of other vanadium-related phases by simple chemical reduction treatments. Such chemical transformations are pseudomorphic and often topotactic, that is, the resulting nanorods belong to a different chemical phase but tend to retain the original morphology and preferential crystal orientation dictated by parent V(2)O(5) crystals.

The corresponding properties of nanorods for their prospective application in electrochemical energy storage (lithium-ion batteries and electrochemical supercapacitors) are discussed. The synthesised V(2)O(5) nanorods possess a stable cyclic behaviour when they are used in a cathode of a lithium-ion battery and are suitable for use in an anode. VN nanorods synthesised by NH(3) reduction of V(2)O(5) were found to possess pseudocapacitive properties in aqueous electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array namely the wire beam electrode (WBE) and noise signatures analysis have been applied in novel combinations to study crevice corrosion behaviour in the presence of pits. Characteristic electrochemical noise signatures were found to correlate with characteristic changes in WBE current distribution maps, which indicate corrosion rates distributions, corrosion patterns and the degree of pitting and crevice corrosion. Specifically, two characteristic noise patterns were observed: (i) the characteristic noise pattern of quick potential changes towards more negative direction with no recovery (termed noise signature I) was found to correspond with the initiation and stabilization of the anode inside crevice; and (ii) the characteristic noise pattern of the cyclic potential oscillation at a constant frequency (termed noise signature II) was found to correspond with the stable anodic dissolution in the occluded cavity site in WBE current distribution maps. A new parameter namely the localization parameter (LP) has been proposed to describe the degree of localization. The LP for crevice corrosion was found to be low compared to that for pitting corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel electrochemically integrated multi-electrode array namely the wire beam electrode(WBE) in combination with noise signatures analysis has been designed to monitor pittingcorrosion of one of the best corrosion resistance ferrous alloys, stainless steel type 316L.From the direct correlation of electrochemical potential noise signatures and galvanic currentdistribution maps during pitting corrosion processes, two characteristic noise patterns wereobserved prior to stable pit formation: (i) the characteristic ‘peak’ of rapid potential transient,towards less negative direction, followed by recovery (termed noise signature I) was found tocorrelate with the disappearance of unstable anode; (ii) the characteristic noise pattern ofquick potential changes towards less negative direction followed by no recovery (termed noisesignature II) was found to correspond with the massive disappearance of minor anodes leadingto formation of highly localized major anodes in the galvanic current distribution maps.