7 resultados para Anaerobic treatment

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effluents from the juice and fruit processing industries have high organic matter content. Discharge of these effluents without appropriate treatment would therefore have a negative impact on the environment. High organic contents and low contamination levels make such effluents suitable for biological treatment, especially anaerobic digestion. In the latter process, significant amounts of digester gas can be produced, turning a waste stream into a source of renewable energy that can be used for electricity and heat production, leading to financial benefits.This paper investigates the feasibility of anaerobic digestion and the gas generation potential of five different effluents from the carrot-juice, orange-juice and sultana processing industries. Benefits are assessed in terms of digester gas production and organic matter reduction. The results show that the specific gas production ranges between 665 and 860 m3 per tonne of effluent treated (as organic dry matter). Furthermore, nearly 100% of the organic matter is converted into gas in the case of the carrot- and orange-juice processing residues, while a 84.5% reduction of the organic matter was found to be achievable in the case of the sultana wastes. While these results are promising, further testing will be required to validate them in a larger scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In anaerobic degradation of substrates containing mainly particulate organic matter, solids hydrolysis is rate-limiting. In these investigations, the particle size of various substrates was reduced by comminution to support hydrolysis. Two positive effects of comminution were observed. For substrates with high fibre content, which are particularly resistant to biodegradation, a significant improvement of the degradation degree was observed as a result of comminution. Secondly, for all substrates tested, and particularly for those rich in fibres, the degradation rate of comminuted samples was significantly higher. The first reason for both effects is an increase of the sample surface area. Several methods for measuring the specific surface area of organic materials, including particle size analysis, Nitrogen-adsorption and enzyme adsorption, were used and compared for the purpose of this study, where the surface area accessible to microbial enzymes is critical. The significance of the surface area in anaerobic degradation of particulate substrates was investigated through a kinetic model where the hydrolysis rate was based on the sample surface area. Good agreements were obtained between model and experiments carried out with samples of various specific surface areas. These results reinforced the significance of the sample surface area in anaerobic degradation processes. However, other effects of comminution responsible for the increased degradation degree and degradation rate were identified and discussed. These include: the increase of dissolved compounds due to cell rupture, exposition of surface areas previously inaccessible for microbial degradation, and alteration of the sample structure such as the lignin-cellulose arrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.