150 resultados para Anaerobic Metabolism

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of creatine supplementation (CrS) on sprint exercise performance and skeletal muscle anaerobic metabolism during and after sprint exercise. Eight active, untrained men performed a 20-s maximal sprint on an air-braked cycle ergometer after 5 days of CrS [30 g creatine (Cr) + 30 g dextrose per day] or placebo (30 g dextrose per day). The trials were separated by 4 wk, and a double-blind crossover design was used. Muscle and blood samples were obtained at rest, immediately after exercise, and after 2 min of passive recovery. CrS increased the muscle total Cr content (9.5 ± 2.0%, P < 0.05, mean ± SE); however, 20-s sprint performance was not improved by CrS. Similarly, the magnitude of the degradation or accumulation of muscle (e.g., adenine nucleotides, phosphocreatine, inosine 5′-monophosphate, lactate, and glycogen) and plasma metabolites (e.g., lactate, hypoxanthine, and ammonia/ammonium) were also unaffected by CrS during exercise or recovery. These data demonstrated that CrS increased muscle total Cr content, but the increase did not induce an improved sprint exercise performance or alterations in anaerobic muscle metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists ( V O2peak 62.8+5.9 ml ·kg-1 · min-1· maximal aerobic power output 340+43 W; mean+s) performed three cycling time-trials where the total external work (102.7+13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7+3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53+0:11 min:s) were shorter than for the even-start (5:04+0:11 min:s; 95% CI=5 to 18 s, effect size=0.65, P 50.001) and slow-start time-trial (5:09+0:11 min:s; 95% CI=7 to 24 s, effect size=1.00, P 50.001). Mean VO2 during the fast-start trials (4.31+0.51 litres · min-1) was 0.18+0.19 litres · min-1 (95% CI=0.07 to 0.30 litres · min-1, effect size=0.94, P =0.003) higher than the even- and 0.18+0.20 litres · min-1 (95% CI=0.5 to 0.30 litres · min-1, effect size=0.86, P =0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to compare accumulated oxygen deficits and markers of anaerobic metabolism [plasma ammonia (NH3) and lactate (La) concentrations] in anaerobically trained male [n = 8, age 14.8 (0.5) years; maximal oxygen consumption V˙O2 max 61.74 (2.23) ml ·  kg−1 · min−1] and female [n = 8, age 14.5 (0.2) years; O2 max 49.62 (3.52) ml · kg−1 · min−1] adolescents. The exercise protocol consisted of runs to exhaustion at speeds predicted to represent 120% and 130% of O2 max. Arterialised blood samples were obtained from a pre-warmed hand via a catheter inserted into a forearm vein. Samples were taken at rest and after 1, 3, 5, 7, 10, 15 and 20 min of recovery. The high-intensity exercise resulted in mean accumulated oxygen deficits that were less (P < 0.05) in females (52.3 ml · kg−1) than in males (68.6 ml · kg−1). Lower (P < 0.05) plasma concentrations of NH3 and La−1, and a higher pH were evident in females compared with males during various stages of the 20-min recovery period. The increase in anaerobic performance in the male adolescent athletes when compared with their female counterparts was associated with an increased plasma concentration of selected plasma and blood metabolites. The observed results may reflect well-established differences between the sexes in the morphology and metabolic power of muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present evidence that oxygen consumption (VO2 ) is oxygen partial pressure (PO2) dependent in striated muscles and PO2 -independent in the vasculature in representatives of three craniate taxa: two teleost fish, a hagfish and a rat. Blood vessel VO2 displayed varying degrees of independence in a PO2 range of 15–95 mmHg, while VO2 by striated muscle tissue slices from all species related linearly to PO2 between 0 and 125 mmHg, despite VO2 rates varying greatly between species and muscle type. In salmon red muscle, lactate concentrations fell in slices incubated at a PO2 of either 30 or 100 mmHg, suggesting aerobic rather than anaerobic metabolism. Consistent with this finding, potential energy, a proxy of ATP turnover, was PO2 -dependent. Our data suggest that the reduction in VO2 with falling PO2 results in a decrease in ATP demand, suggesting that the hypoxic signal is sensed and cellular changes effected. Viability and diffusion limitation of the preparations were investigated using salmon cardiac and skeletal muscles. Following the initial PO2 depletion, reoxygenation of the Ringer bathing salmon cardiac muscle resulted in VO2s that was unchanged from the first run. VO2 increased in all muscles uncoupled with p-trifluoromethoxylphenyl-hydrazone (FCCP) and 2,4-dinitrophenol (DNP). Mitochondrial succinate dehydrogenase activity, quantified by reduction of 3-(4,5-dimethylthiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to formazan, was constant over the course of the experiment. These three findings indicate that the tissues remained viable over time and ruled out diffusion-limitation as a constraint on VO2.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goals of pre-exercise nutritional strategies are to optimise the availability of carbohydrate (CHO) and fluid. Ingestion of CHO 3-4 hr prior to exercise can increase liver and muscle glycogen stores and has been associated with enhanced endurance exercise performance. The metabolic effects of CHO ingestion persist for at least 6 hr. Although an increase in plasma insulin following CHO ingestion in the hour prior to exercise inhibits lipolysis and liver glucose output, and can lead to transient hypoglycemia during subsequent exercise, there is no convincing evidence that this is always associated with impaired exercise performance. Having said that, individual experience should inform individual practice. Interventions to increase plasma FFA availability prior to exercise have been shown to reduce CHO utilisation during exercise, but do not appear to have major ergogenic benefits. It is more difficult to hyperhydrate prior to exercise and although there has been interest in glycerol ingestion, to date research results have been equivocal. At the very least, athletes should ensure euhydration prior to exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have demonstrated that oral glucose tolerance is impaired in the immediate postexercise period. A double-tracer technique was used to examine glucose kinetics during a 2-h oral glucose (75 g) tolerance test (OGTT) 30 min after exercise (Ex, 55 min at 71 ± 2% of peak O2 uptake) and 24 h after exercise (Rest) in endurance-trained men. The area under the plasma glucose curve was 71% greater in Ex than in Rest (P = 0.01). The higher glucose response occurred even though whole body rate of glucose disappearance was 24% higher after exercise (P = 0.04, main effect). Whole body rate of glucose appearance was 25% higher after exercise (P = 0.03, main effect). There were no differences in total (2 h) endogenous glucose appearance (RaE) or the magnitude of suppression of RaE, although RaE was higher from 15 to 30 min during the OGTT in Ex. However, the cumulative appearance of oral glucose was 30% higher in Ex (P = 0.03, main effect). There were no differences in glucose clearance rate or plasma insulin responses between the two conditions. These results suggest that adaptations in splanchnic tissues by prior exercise facilitate greater glucose output from the splanchnic region after glucose ingestion, resulting in a greater glycemic response and, consequently, a greater rate of whole body glucose uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of reduced plasma free fatty acid (FFA) availability on carbohydrate metabolism during exercise. Six untrained women cycled for 60 minutes at approximately 58% of maximum oxygen uptake after ingestion of a placebo (CON) or nicotinic acid (NA), 30 minutes before exercise (7.4 ± 0.5 mg·kg−1 body weight), and at 0 minutes (3.7 ± 0.3 mg·kg−1) and 30 minutes (3.7 ± 0.3 mg·kg−1) of exercise. Glucose kinetics were measured using a primed, continuous infusion of [6,6-2H] glucose. Plasma FFA (CON, 0.86 ± 0.12; NA, 0.21 ± 0.11 mmol·L−1 at 60 minutes, P < .05) and glycerol (CON, 0.34 ± 0.05; NA, 0.10 ± 0.04 mmol·L−1 at 60 minutes, P < .05) were suppressed throughout exercise. Mean respiratory exchange ratio (RER) during exercise was higher (P < .05) in NA (0.89 ± 0.02) than CON (0.83 ± 0.02). Plasma glucose and glucose production were similar between trials. Total glucose uptake during exercise was greater (P < .05) in NA (1,876 ± 161 μmol·kg−1) than in CON (1,525 ± 107 μmol·kg−1). Total fat oxidation was reduced (P < .05) by approximately 32% during exercise in NA. Total carbohydrate oxidized was approximately 42% greater (P < .05) in NA (412 ± 40 mmol) than CON (290 ± 37 mmol), of which, approximately 16% (20 ± 10 mmol) could be attributed to glucose. Plasma insulin and glucagon were similar between trials. Catecholamines were higher (P < .05) during exercise in NA. In summary, during prolonged moderate exercise in untrained women, reduced FFA availability results in a compensatory increase in carbohydrate oxidation, which appears to be due predominantly to an increase in glycogen utilization, although there was a small, but significant, increase in whole body glucose uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a single bout of exercise and exercise training on the expression of genes necessary for the transport and beta -oxidation of fatty acids (FA), together with the gene expression of transcription factors implicated in the regulation of FA homeostasis were investigated. Seven human subjects (3 male, 4 female, 28.9 ± 3.1 yr of age, range 20-42 yr, body mass index 22.6 kg/m2, range 17-26 kg/m2) underwent a 9-day exercise training program of 60 min cycling per day at 63% peak oxygen uptake (VO2 peak; 104 ± 14 W). On days 1 and 9 of the program, muscle biopsies were sampled from the vastus lateralis muscle at rest, at the completion of exercise, and again 3 h postexercise. Gene expression of key components of FA transport [FA translocase (FAT/CD36), plasma membrane-associated FA-binding protein], beta -oxidation [carntine palmitoyltransferase(CPT) I, beta -hydroxyacyl-CoA dehydrogenase] and transcriptional control [peroxisome proliferator-activated receptor (PPAR)alpha , PPARgamma , PPARgamma coactivator 1, sterol regulatory element-binding protein-1c] were unaltered by exercise when measured at the completion and at 3 h postexercise. Training increased total lipid oxidation by 24% (P < 0.05) for the 1-h cycling bout. This increased capacity for lipid oxidation was accompanied by an increased expression of FAT/CD36 and CPT I mRNA. Similarly, FAT/CD36 protein abundance was also upregulated by exercise training. We conclude that enhanced fat oxidation after exercise training is most closely associated with the genes involved in regulating FA uptake across the plasma membrane (FAT/CD36) and across the mitochondrial membrane (CPT I).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effluents from the juice and fruit processing industries have high organic matter content. Discharge of these effluents without appropriate treatment would therefore have a negative impact on the environment. High organic contents and low contamination levels make such effluents suitable for biological treatment, especially anaerobic digestion. In the latter process, significant amounts of digester gas can be produced, turning a waste stream into a source of renewable energy that can be used for electricity and heat production, leading to financial benefits.This paper investigates the feasibility of anaerobic digestion and the gas generation potential of five different effluents from the carrot-juice, orange-juice and sultana processing industries. Benefits are assessed in terms of digester gas production and organic matter reduction. The results show that the specific gas production ranges between 665 and 860 m3 per tonne of effluent treated (as organic dry matter). Furthermore, nearly 100% of the organic matter is converted into gas in the case of the carrot- and orange-juice processing residues, while a 84.5% reduction of the organic matter was found to be achievable in the case of the sultana wastes. While these results are promising, further testing will be required to validate them in a larger scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In anaerobic degradation of substrates containing mainly particulate organic matter, solids hydrolysis is rate-limiting. In these investigations, the particle size of various substrates was reduced by comminution to support hydrolysis. Two positive effects of comminution were observed. For substrates with high fibre content, which are particularly resistant to biodegradation, a significant improvement of the degradation degree was observed as a result of comminution. Secondly, for all substrates tested, and particularly for those rich in fibres, the degradation rate of comminuted samples was significantly higher. The first reason for both effects is an increase of the sample surface area. Several methods for measuring the specific surface area of organic materials, including particle size analysis, Nitrogen-adsorption and enzyme adsorption, were used and compared for the purpose of this study, where the surface area accessible to microbial enzymes is critical. The significance of the surface area in anaerobic degradation of particulate substrates was investigated through a kinetic model where the hydrolysis rate was based on the sample surface area. Good agreements were obtained between model and experiments carried out with samples of various specific surface areas. These results reinforced the significance of the sample surface area in anaerobic degradation processes. However, other effects of comminution responsible for the increased degradation degree and degradation rate were identified and discussed. These include: the increase of dissolved compounds due to cell rupture, exposition of surface areas previously inaccessible for microbial degradation, and alteration of the sample structure such as the lignin-cellulose arrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.