15 resultados para Aligned Corpus

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a study of the response of the Australian government under Robert Menzies to the emergence of the Afro-Asian movement in the mid-1950s, especially the element of the non-aligned nations, which culminated in the Bandung meeting of April 1955. Non-alignment and anti-colonialism posed direct threats to the Menzies government's plans for the defence of Southeast Asia and its foreign policy for the region. The study of the Australian response to the Bandung meeting reveals the different legacies which European imperialism left behind in Australia compared with its neighbours in south and east Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable electrocatalytic properties and small size of carbon nanotubes make them ideal for achieving direct electron transfer to proteins, important in understanding their redox properties and in the development of biosensors. Here, we report shortened SWNTs can be aligned normal to an electrode by self-assembly and act as molecular wires to allow electrical communication between the underlying electrode and redox proteins covalently attached to the ends of the SWNTs, in this case, microperoxidase MP-11. The efficiency of the electron transfer through the SWNTs is demonstrated by electrodes modified with tubes cut to different lengths having the same electron-transfer rate constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large percentage of the population in developing countries saves, remits money or accesses credit using informal financial services. Financial inclusion initiatives aim to expand the reach and attractiveness of formal financial services. Recently, the Financial Action Task Force embraced financial inclusion as complementary to anti-money laundering and counter-terrorist financing as it enhances financial transparency. Analyzing preliminary data from FinScope surveys on eight African countries we argue that an increase in access to formal services does not automatically imply an immediate and corresponding reduction of usage of informal services, especially as many individuals use informal and formal services in parallel. We consider customer trade-offs regarding the use of formal and informal services especially considering transparency as a potential disincentive to use formal services. The alignment of financial inclusion and integrity will fail where customers are apprehensive about increased transparency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mismatch in mechanical properties between synthetic vascular graft and arteries contribute to graft failure. The viscoelastic properties of arteries are conferred by elastin and collagen. In this study, the mechanical properties and cellular interactions of aligned nanofibrous polyurethane (PU) scaffolds blended with elastin, collagen or a mixture of both proteins were examined. Elastin softened PU to a peak stress and strain of 7.86 MPa and 112.28 % respectively, which are similar to those observed in blood vessels. Collagen-blended PU increased in peak stress to 28.14 MPa. The growth of smooth muscle cells (SMCs) on both collagen-blended and elastin/collagen-blended scaffold increased by 283 and 224 % respectively when compared to PU. Smooth muscle myosin staining indicated that the cells are contractile SMCs which are favored in vascular tissue engineering. Elastin and collagen are beneficial for creating compliant synthetic vascular grafts as elastin provided the necessary viscoelastic properties while collagen enhanced the cellular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Financial Action Task Force embraces financial inclusion as complementary to anti-money laundering and counterterrorist financing, as it enhances transparency. This support is based on the premise that the increased use of formal financial services leads to a reduction of usage of informal services. We present evidence on eight African countries that both are not negatively associated. Moreover, informal employment and cash preference reduce the inclination to use mobile financial services. If an increase in transparency acts as disincentive to use formal services, the alignment of financial inclusion and integrity will fail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, nanostructured conductive platforms synthesized from aligned multiwalled carbon nanotubes and polypyrrole are investigated as myo-regenerative scaffolds. Myotube formation follows a linear path on the platforms coinciding with extent of nanotopography. In addition, electrical stimulation enhances myo-nuclear number and differentiation. These studies demonstrate that conductive polymer platforms can be used to influence muscle cell behaviour through nanostructure and electrical stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Novel magnetite-carbon nanofiber hybrids (denoted by Fe3O4@CNFs) have been developed by coating carbon nanofibers (CNFs) with magnetite nanoparticles in order to align CNFs in epoxy using a relatively weak magnetic field. Experimental results have shown that a weak magnetic field (∼mT) can align these newly-developed nanofiber hybrids to form a chain-like structure in the epoxy resin. Upon curing, the epoxy nanocomposites containing the aligned Fe3O4@CNFs show (i) greatly improved electrical conductivity in the alignment direction and (ii) significantly higher fracture toughness when the Fe3O4@CNFs are aligned normal to the crack surface, compared to the nanocomposites containing randomly-oriented Fe3O4@CNFs. The mechanisms underpinning the significant improvements in the fracture toughness have been identified, including interfacial debonding, pull-out, crack bridging and rupture of the Fe3O4@CNFs, and plastic void growth in the polymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fibrous conduit consisting of well-aligned nanofibers with longitudinal nanogrooves on the fiber surface was prepared by electrospinning and was subjected to an in vivo nerve regeneration study on rats using a sciatic nerve injury model. For comparison, a fibrous conduit having a similar fiber alignment structure without surface groove and an autograft were also conducted in the same test. The electrophysiological, walking track, gastrocnemius muscle, triple-immunofluorescence, and immunohistological analyses indicated that grooved fibers effectively improved sciatic nerve regeneration. This is mainly attributed to the highly ordered secondary structure formed by surface grooves and an increase in the specific surface area. Fibrous conduits made of longitudinally aligned nanofibers with longitudinal nanogrooves on the fiber surface may offer a new nerve guidance conduit for peripheral nerve repair and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper compares improvements to the fracture energy and electrical conductivity of epoxy nanocomposites reinforced by one-dimensional carbon nanofibres (CNFs) or two-dimensional graphene nanoplatelets (GNPs). The focus of this investigation is on the effects of the shape, orientation and concentration (i.e. 0.5, 1.0, 1.5 and 2.0 wt%) of nanoscale carbon reinforcements on the property improvements. Alignment of the nano-reinforcements in the epoxy nanocomposites was achieved through the application of an alternating current (AC) electric-field before gelation and curing of the epoxy resin. Alignment of the nano-reinforcements increased the electrical conductivity and simultaneously lowered the percolation threshold necessary to form a conductive network in the nanocomposites. Nano-reinforcement alignment also increased greatly the fracture energy of the epoxy due to a higher fraction of the nano-reinforcement participating in multiple intrinsic (e.g. interfacial debonding and void growth) and extrinsic (e.g. pull-out and bridging) toughening mechanisms. A mechanistic model is presented to quantify the contributions from the different toughening mechanisms induced by CNFs and GNPs to the large improvements in fracture toughness. The model results show that one-dimensional CNFs are more effective than GNPs at increasing the intrinsic toughness of epoxy via void growth, whereas two-dimensional GNPs are more effective than CNFs at improving the extrinsic toughness via crack bridging and pull-out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While research surrounding ePortfolios abounds, few studies make explicit the pedagogical underpinnings of their use. Some suggest that the decision to use new technologies, like ePortfolios, is often made in ignorance of pedagogic evidence. Developed over the course of a two-year national study on the implementation of ePortfolios, this paper argues the importance of a considered approach to ePortfolio use; one that is premised on carefully linking the purpose and context to the type of portfolio. The paper explores the potential of ePortfolios as they align with four specific pillars of learning: learning to know, learning to do, learning to live together and learning to be. It discusses the pedagogic underpinnings – that is, the why – of ePortfolios including: skills and competencies; transformative potential; reflection; identity; active learning; employability; and assessment. The succeeding section provides recommendations for practical ePortfolio use – that is, the how – and an original framework linking ePortfolio purpose to design is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents systematic studies on aligning carbon nanofillers in epoxy by external fields, either electric fields or magnetic fields, to create nanocomposites with greatly improved mechanical and electrical properties. Carbon nanofibers (CNFs) and graphene nanoplatelets (GnPs) were observed to align along the field direction in the epoxy resin. Compared to the unmodifed epoxy and those with randomly-oriented carbon nanofillers, the nanocomposites with aligned carbon nanofillers showed significantly higher fracture toughness and electrical conductivity along the direction of the external field. Compared with randomly-oriented nanofillers, aligned GnPs and CNFs produced 40% and 27% improvement in fracture energy at 1.0 wt%, bringing the total increase in fracture energy over the neat polymer to more than 10 times. Several key toughening mechanisms were identified through fractographic analysis, which was used to develop predictive models to quantify the increases in the value of GIc as a result of 1-D and 2D carbon nanofillers. The present findings suggest that aligning carbon nanofillers presents a very promising technique to create multi-scale reinforcement with greatly increased electric conductivity and fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.