3 resultados para Al7050-T7451

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an emerging surface treatment technology for metallic materials, which appears to produce more significant compressive residual stresses than those from the conventional shot peening (SP) for fatigue, corrosion and wear resistance, etc. The finite element method has been applied to simulate the laser shock peening treatment to provide the overall numerical assessment of the characteristic physical processes and transformations. However, the previous researchers mostly focused on metallic specimens with simple geometry, e.g. flat surface. The current work investigates geometrical effects of metallic specimens with curved surface on the residual stress fields produced by LSP process using three-dimensional finite element (3-D FEM) analysis and aluminium alloy rods with a middle scalloped section subject to two-sided laser shock peening. Specimens were numerically studied to determine dynamic and residual stress fields with varying laser parameters and geometrical parameters, e.g. laser power intensity and radius of the middle scalloped section. The results showed that the geometrical effects of the curved target surface greatly influenced residual stress fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an emerging surface treatment technology for metallic materials, which appears to produce more significant compressive residual stresses than those from the conventional shot peening (SP) for fatigue, corrosion and wear resistance, etc. The finite element method has been applied to simulate the laser shock peening treatment to provide the overall numerical assessment of the characteristic physical processes and transformations. However, the previous researchers mostly focused on metallic specimens with simple geometry, e.g. flat surface. The current work investigates geometrical effects of metallic specimens with curved surface on the residual stress fields produced by LSP process using three-dimensional finite element (3-D FEM) analysis and aluminium alloy rods with a middle scalloped section subject to two-sided laser shock peening. Specimens were numerically studied to determine dynamic and residual stress fields with varying laser parameters and geometrical parameters, e.g. laser power intensity and radius of the middle scalloped section. The results showed that the geometrical effects of the curved target surface greatly influenced residual stress fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment method that can result in significant improvement in the fatigue life of many metallic components. The process produces very little or no surface profile modification while producing a considerably deeper compressive residual stress layer than traditional shot peening operations. The work discussed here was designed to: (a) quantify the fatigue life improvement achieved by LSP in a typical high strength aircraft aluminium alloy and (b) identify any technological risks associated with its use. It is shown that when LSP conditions are optimal for the material and specimen configuration, a —three to four times increase in fatigue life over the as-machined specimens could be achieved for a representative fighter aircraft loading spectrum when applied at a representative load level. However, if the process parameters are not optimal for the material investigated here, fatigue lives of LSP treated specimens may be reduced instead of increased due to the occurrence of internal cracking. This paper details the effect of laser power density on fatigue life of 7050-T7451 aluminium alloy by experimental and numerical analysis.