14 resultados para Air flow

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined effect of scan speed, hydrogen and air flow rates on the flame ionization detection (FID) peak response of phospholipid classes has been studied to determine the optimum levels of these parameters. The phospholipid composition of different types of commercial lecithins, as well as lecithins combined with fish oils, has been analyzed by Iatroscan TLC‐FID Mark‐6s under optimized conditions. An air flow rate of 2 L/min, a hydrogen flow rate of 150–160 mL/min, and a scan speed of 30 s/rod seem to be the ideal conditions for scanning phospholipids with complete pyrolysis in the flame in the Mark‐6 model. Increasing the scan speed rapidly decreased the FID response. A hydrogen flow rate as high as 170 mL/min could be used at relatively low air flow rates (&#x003C2 L/min) and the response declined when both air flow rate and hydrogen flow rate increased simultaneously. Both linear and curvilinear relationships had highly significant correlations (p&#x003C0.01) with the sample load. Time course reactions, including the hydrolysis of phosphatidylserine using enzymes, can be successfully monitored by the Iatroscan TLC‐FID Chromarod system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a renewable and non-polluting energy source, wind is used to produce electricity via large-diameter horizontal or vertical axis wind turbines. Such large wind turbines have been well designed and widely applied in industry. However, little attention has been paid to the design and development of miniature wind energy harvesters, which have great potential to be applied to the HVAC (heating, ventilating and air conditions) ventilation exhaust systems and household personal properties. In this work, 10 air-driven electromagnetic energy harvesters are fabricated using 3D printing technology. Parametric measurements are then conducted to study the effects of (1) the blade number, (2) its geometric size, (3) aspect ratio, presence or absence of (4) solid central shaft, (5) end plates, and (6) blade orientation. The maximum electrical power is 0.305 W. To demonstrate its practical application, the electricity generated is used to power 4 LED (light-emitting diode) lights. The maximum overall efficiency ηmax is approximately 6.59%. The cut-in and minimum operating Reynolds numbers are measured. The present study reveals that the 3D printed miniature energy harvesters provide a more efficient platform for harnessing ‘wind power’.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Performance of advanced fabric energy storage systems has not been reported for Australian conditions. The influence pf slab thickness and air flow rate on the annual thermal load, and maximum heating and cooling demands for a typical office module using a ventilated hollow core concrete slab system has been investigated by simulation. Performance results for Melbourne are presented and comments made on other locations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the urban heat island effect in Singapore and examines the key factors causing this effect. The possibilities of improving heat extraction rate by optimizing air flow in selected hot spots were explored. The effect of building geometry, façade materials and the location of air-conditioning condensers on the outdoor air temperature was explored using computational fluid dynamics (CFD) simulations. It was found that at very low wind speeds, the effect of façade materials and their colours was very significant and the temperature at the middle of a narrow canyon increased up to 2.5 °C with the façade material having lower albedo. It was also found that strategically placing a few high-rise towers will enhance the air flow inside the canyon thereby reducing the air temperature. Adopting an optimum H/W ratio for the canyons increased the velocity by up to 35% and reduced the corresponding temperature by up to 0.7 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper applies established testing methods used to discover the ventilation performance of various residential building envelope construction in Australia. Under the definition of 'ventilation performance' we imply the building envelope leakage (or infiltration) the living space air change rates, the volumetric flow rates and the pathways of air flow between subfloor, room volume and roof spaces. All of the methods applied and discussed here are on-site, evidencebased performance of actual structures as tested by the Mobile Architecture & Built Environment Laboratory and Air Barrier Technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combined effects of hydrogen and air flow rates on the peak response of selected neutral lipid classes (triacylglycerol, diacylglycerol, monoacylglycerol, free fatty acids, and ethyl esters) were studied to optimize and calibrate the Iatroscan Mk-6s Chromarod system for the qualitative and quantitative analysis of lipid classes by thin-layer chromatography (TLC) with flame ionization detection in fish oil during the transesterification process. Air flow rate of 2 L/min, hydrogen flow rate of 150-160 mL/min, and scan rate of 30 s/rod were found to be the optimum conditions. All samples were also analyzed by high performance liquid chromatography (HPLC) with evaporative light scattering detection. Quantitative results obtained by TLC with the flame ionization detection method were comparable to those obtained from HPLC with evaporative light scattering detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper applies established and new testing methods to discover the ventilation performance of various residential building envelope constructions in Australia. Under the definition of 'ventilation performance' we imply the building envelope leakage (or infiltration) of the living space air change rates, the volumetric flow rates and the pathways of air flow between subfloor, living and roof spaces. All of the methods applied and discussed here are on-site, evidence-based performance of actual structures as tested by the Mobile Architecture and Built Environment Laboratory and Air Barrier Technologies. The testing processes primarily involve the Tracer Gas Decay Method (TGDM) and rhe fan pressurisation method (FPM a.k.a 'blower door'). All the measurements are performed with respect to the external wind speed and direction as well as the typical weather parameters. This paper discusses the differences and similarities of both testing methods as well as several other testing procedures that can inform the researcher on air leakage pathways. Findings of a simultaneous TGDM and FPM air leakage rate comparison are also encountered in this paper. One of the most informative testing methods, is the application of three different tracer gasses introduced into different spaces (subfloor, living and roof) to discover pathways of air flow within residential construction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urban outdoor spaces are considered essential elements of cities, where the greatest amount of human contact and interaction takes place. That is the reason why there is increasing public interest in the quality of open urban spaces as they can contribute to the quality of life within cities, or contrarily increase isolation and social exclusion. There are a lot of factors influencing the success of the outdoor spaces; one of the principal factors is the microclimatic comfort. In the hot areas, the outdoor thermal comfort conditions during the daytime are often far above acceptable comfort standards due to intense solar radiation and high solar elevations. The variation of the urban spaces' configuration can generate significant modifications of the microclimatic parameters. Design decisions such as street and sidewalk widths, shading structures, materials, landscaping, building heights, and inducing air flow have a significant impact on the pedestrian thermal comfort and subsequently on the use of the urban environment. Although it has been established that the vegetation elements should be considered as one of the main tools that can be used in improving the thermal comfort in outdoor spaces, the integration of the climate dimension in the planting design process in urban spaces is lacking because of insufficient interdisciplinary work between urban climatology, urban design and landscape architecture. The primary aim of this research is to study the influence of some of the design decision for the plantation elements in outdoor spaces on the thermal comfort of its users. This will provide landscape designers and decision makers with the appropriate tools for effectively assessing the development of urban environment while considering the microclimate of outdoor spaces. A special emphasis is put on summertime conditions in Egypt. Findings of this research will contribute to sustainable urban design of outdoor spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple way to improve its power coefficient (cp) of a Savonius turbine is by its installation above a cuboidal building as the building will redirect the wind and increase its speed significantly. To determinethe gain, a turbine was constructed and installed above a bluff body and tow tested. Detailed measurements of vehicle speed and turbine power were made. Tow test speeds were 8, 10 and 12 m/s, while TSR range was 0.6-1.1. Most importantly, wind speed at the position beside and slightly above the turbine was measured during test runs. The cp calculated using this measured wind speed was used to validate CFD simulation results. Simulation results were also used to obtain the relationships between the wind speed of the free stream and at the anemometer position. Typically, wind speed at the anemometer position is about 9% higher than those of the free stream. These relationships were used to derive the free stream wind speed of each experimental run. The cp calculated using these derived free stream wind speeds showed an increase of 25% at 12 m/s wind speed, compared to the cp reported by previous researchers for a similar turbine operating in unmodified air flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1999, a 2100 m2 (GFA) two-storey rammed earth building was built on the Thurgoona campus of Charles Sturt University. The climate at Thurgoona is considered Mediterranean – hot dry summers and cool winters. The internal and external walls of the building are constructed from 300-mm thick rammed earth (pise) and are load bearing. The thermal performance of the building has been investigated, both experimentally and theoretically over the summer and winter seasons of 2000/1. As part of these investigations heat flux sensors and thermistors were embedded in one of the external walls of a ground floor office, and data from the transducers has been used to determine the heat flow at the internal and external wall surfaces. The simulation software, TRNSYS, has been used to model the thermal performance of the same office. The programme allows the user to calculate the heat flow at the walls, which define any particular thermal zone. A comparison of measured and predicted values of heat flows and air temperatures has been used to validate the model. The model has then been used to simulate the effect of shading and added insulation on the thermal performance of the external walls in both summer and winter and these results are also presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an energy management system to reduce the energy consumption of a vehicle when its air conditioning system is in use. The system controls the mass flow rate of the air by dynamically adjusting the blower speed and air-gates opening under various heat and loads circumstances. Simulations were conducted for a travelling vehicle operating the air conditioning system without and with the developed energy management system. The results show that the comfort temperature within the cabin room is achieved for reduced amount of energy consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.