2 resultados para Agrobacterium tumefaciens

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports Agrobacterium rhizogenes-mediated transformation of three cultivars of Ocimum basilicum for hairy root establishment, screening and selection for the production of rosmarinic acid and antioxidants. Hairy root development was found to be explant-specific and virulence-dependent. Distinct inter-cultivar morphological variability was found between the seven axenically developed hairy root lines and morphological traits were found to be correlated with the presence of aux2 genes, their expression and endogenous IAA content. Further inter-cultivar variability in the content of total phenolics, rosmarinic acid and caffeic acid was also found. Production of rosmarinic acid was found to be age-dependent and cultivar-specific. Chemiluminescence analysis showed the hairy roots to be rich in antioxidants and that rosmarinic acid was the major antioxidant molecule. The concentration of rosmarinic acid was found to be positively correlated with the total antioxidant potential of the hairy root extracts. On the basis of origin, morphology and metabolite content, three elite hairy root lines were selected that had significantly higher rosmarinic acid production, biomass and antioxidant potential than non-transformed roots. These new lines are rich reserves of both antioxidants and rosmarinic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.