128 resultados para Agricultural landscapes

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were conducted on streams flowing through agricultural floodplains in south-eastern Australia to quantify whether reductions in riparian canopy cover were associated with alterations to the input and benthic standing stocks of coarse allochthonous detritus. Comparisons were made among three farmland reaches and three reaches within reserves with intact cover of remnant overstorey trees. Detritus inputs to these reaches were measured monthly over 2 years using litter traps. Direct inputs to streams within the reserves were relatively high (550–617 g ash free dry weight (AFDW) m–2 year–1), but were lower at farmland reaches with the lowest canopy covers (83–117 gAFDW m–2 year–1). Only a minor fraction of the total allochthonous input (<10%) entered any of the study reaches laterally. The mean amounts of benthic detritus were lowest in the most open farmland reaches. Standing stocks of benthic detritus were found to be highly patchy across a large number of agricultural streams, but were consistently very low where the streamside canopy cover was below ~35%. Canopy cover should be restored along cleared agricultural streams because allochthonous detritus is a major source of food and habitat for aquatic ecosystems. Given the absence of pristine lowland streams in south-eastern Australia, those reaches with the most intact remnant overstorey canopies should be used to guide restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological processes such as plant–animal interactions have a critical role in shaping the structure and function of ecosystems, but little is known of how such processes are modified by changes in landscape structure. We investigated the effect of landscape change on mistletoe parasitism in fragmented agricultural environments by surveying mistletoes on eucalypt host trees in 24 landscapes, each 100 km2 in size, in south-eastern Australia. Landscapes were selected to represent a gradient in extent (from 60% to 2% cover) and spatial pattern of remnant wooded vegetation. Mistletoes were surveyed at 15 sites in each landscape, stratified to sample five types of wooded elements in proportion to their relative cover. The incidence per landscape of box mistletoe (Amyema miquelii), the most common species, was best explained by the extent of wooded cover (non-linear relationship) and mean annual rainfall. Higher incidence occurred in landscapes with intermediate levels of cover (15–30%) and higher rainfall (>500 mm). Importantly, a marked non-linear decline in the incidence of A. miquelii in low-cover landscapes implies a disproportionate loss of this species in remaining wooded vegetation, greater than that attributable to decreasing forest cover. The most likely mechanism is the effect of landscape change on the mistletoebird (Dicaeum hirundinaceum), the primary seed-dispersal vector for A. miquelii. Our results are consistent with observations that habitat fragmentation initially enhances mistletoe occurrence in agricultural environments; but in this region, when wooded vegetation fell below a threshold of ~15% landscape cover, the incidence of A. miquelii declined precipitously. Conservation management will benefit from greater understanding of the components of landscape structure that most influence ecological processes, such as mistletoe parasitism and other plant–animal mutualisms, and the critical stages in such relationships. This will facilitate action before critical thresholds are crossed and cascading effects extend to other aspects of ecosystem function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat restoration, including revegetation of linear strips and enlargement of remnant patches, may benefit native fauna in highly fragmented landscapes. Such restoration has occurred around the world, even though the relative importance of strips and patches of vegetation remains controversial. Using reptile communities from south-eastern Australia, we assessed the conservation value of revegetation in strips and alongside remnant patches compared with remnant vegetation and cleared roadsides. We also examined the distance that reptiles occurred from remnant patches into linear vegetation. We found that reptile species richness and counts did not substantially differ between revegetated, remnant and cleared habitats, or between linear strip and patch treatments. This may indicate that species sensitive to land clearing have already been lost from the landscape. These results imply that if specialist species have already been lost, we may be unable to measure the effects of agriculture on biodiversity. Furthermore, revegetation with the expectation that fauna will recolonize may be unrealistic and translocations may be necessary. Unexpectedly, we recorded higher species richness and counts of rare reptile species in remnant linear strips as distance from remnant patches increased. Ground-layer attributes were important for increasing reptile species richness and counts and in structuring reptile communities, explaining approximately three times as much variation as remnant shape or vegetation type (remnant, revegetated, cleared). Management agencies should protect and effectively manage remnant linear strips if rarer reptiles are to be retained, paying particular attention to ground-layer attributes. The decision to include ground layers in future revegetation activities will be more important than the shape of restored areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Private property accounts for much of the planet's arable land, and most of this has been cleared for agricultural production. Agricultural areas retain only fragments of their original vegetation and this has been detrimental to many native plant and animal species. Habitat restoration and revegetation may be able to reconnect and enlarge existing remnant areas in agricultural landscapes and, thereby, enhance native plant and animal communities. However, conservation initiatives will be successful only if landowners actively participate in restoration actions. This study used four hundred postal questionnaires to assess the degree to which landowners in two regions of south-eastern Australia adopt restoration activities, their opinions regarding remnant and revegetated land and their management actions in these areas. One hundred and seventy nine completed questionnaires were received. Three quarters of respondents had undertaken restoration on their property or were planning to revegetate in the future. Landcare members were most likely to have previously revegetated and future revegetation intentions were best predicted by previous restoration activities and a primary income source that was off-farm. Landowners were more likely to manage restored and remnant areas if they perceived threats such as weeds, pest animals and fire risk would be detrimental to their property, than to enhance environmental outcomes. These results indicate that landowners are interested in restoring natural areas, but without greater assistance to restore ground layers and manage perceived threats posed by fire and invasive plants and animals, restoration actions will not have their desired biodiversity benefits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The survival of habitat-dependent fauna within agricultural mosaics depends on their ability to occupy remnant habitat patches and move through the modified landscape. In north-west Victoria, Australia, less than 10% of the pre-European extent of Selah Casuarina pauper woodland remains intact due to agricultural development. The White-browed Treecreeper Climacteris affinis, is a small, insectivorous passerine that, in this region, preferentially inhabits Selah woodland. To assess the ability of C. affinis to persist in an agricultural landscape, 30 woodland sites in the Millewa landscape (34°30'S, 141°30'E) were surveyed, and patterns of patch occupancy used to examine the influence of spatial characteristics, landscape context and grazing by stock on the suitability of remnants as C. affinis habitat. Sites occupied by C. affinis were larger and less likely to be grazed by stock than vacant patches. The area-dependency of patch occupancy represents a step-threshold: C. affinis were not detected in remnants with less than 18.5 ha of Selah woodland but above this threshold, density was not correlated with patch area. Measures of patch isolation, the existence of linking linear "corridors" and tree density were not reliable indicators of patch occupancy. The presence of the species in remnants entirely surrounded by agricultural land suggests they are capable of crossing up to 450 m of cultivated land to prospect for habitat. The extensive network of linear vegetation and the numerous small remnants and scattered trees appear to facilitate movements of C. affinis in this landscape. Increasing the size of existing remnants, creating new habitat to expand the area of occupancy and maintaining landscape connectivity are priorities for the long-term management of this threatened species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Studies of landscape change are seldom conducted at scales commensurate with the processes they purport to investigate. Landscape change is a landscape-level process, yet most studies focus on patches. Even when landscape context is considered, inference remains at the patch-level. The unit of investigation must be extended beyond individual patches to whole mosaics in order to advance understanding of faunal responses to landscape change.

2. In this study, we aggregated data from multiple sites per landscape such that both the response and explanatory variables characterized 'whole' landscapes, allowing for landscape-level inference about factors influencing species' incidence.

3. We used hierarchical partitioning and Bayesian variable selection methods to develop species-specific models that examined the influence of four categories of landscape properties – habitat extent, habitat configuration, landscape composition and geographical location – on the incidence of 58 species of woodland-dependent birds in 24 agricultural landscapes (each 100 km2) in south-eastern Australia.

4. There was strong evidence for a positive effect of habitat extent for 27 species. Thirty species were related to at least one of the four landscape composition variables, and geographical location was important for 19 species. Habitat configuration was influential for 13 species and where important, the impacts of fragmentation per se were detrimental.

5. Variation among species in the influential landscape variables indicates that different species respond to different sets of cues in land mosaics. Thus, although all species were grouped a priori as 'woodland-dependent', expectations based on general ecological characteristics may prove unreliable.

6. Synthesis and applications. These results underscore the value of moving beyond the fragmentation paradigm focused on the spatial pattern of habitat vs. non-habitat, to a greater appreciation of the composition and heterogeneity of land mosaics. Landscape-level inference will enable improved conservation outcomes by recognizing the influence of landscape properties on biota and devising strategies at this scale to complement patch-based management. We provide strong empirical evidence that biodiversity management in agricultural landscapes must focus on habitat extent. Complementary management of other landscape attributes, such as habitat aggregation and intensity of agricultural land-use, will also enhance the value of agricultural landscapes for woodland birds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Throughout the world, many native species inhabit agricultural landscapes. While natural habitats will form the cornerstone of conservation efforts in production-oriented environments, the success of these efforts will be enhanced by a greater understanding of the potential contribution of the increasingly modified countryside (‘matrix’) elements in these landscapes. Here, we investigate the relative occurrence of birds in some landscape elements (i.e. land-uses, vegetation types) common to agricultural environments around the world. Twenty-seven study mosaics (1 km × 1 km in size), selected to incorporate variation in the cover of native vegetation and the richness of different landscape elements, were sampled in Gippsland, south-eastern Australia. Birds were surveyed in five main types of elements: native vegetation, linear vegetation, plantation, scattered trees and pasture. The greatest number of species was recorded in native vegetation, the most important element for the majority of birds in Australian agricultural landscapes. Nevertheless, most countryside elements had value for many species; particularly structurally complex elements. Ordination analyses (based on presence/absence data for 81 species) showed that the composition of bird communities differed between elements. The number of mosaics in which ‘all species’ and ‘woodland species’ were recorded was positively related to the breadth of elements they used; thus species using a greater number of elements occurred more frequently in the study region. Correlation analyses identified that the richness of woodland species (those of increased conservation concern in Australia) in different elements was influenced by features of the mosaic in which they occurred. Notably, the richness of woodland bird species recorded in scattered trees and pasture increased with local native vegetation cover. Key implications for conservation in Australian agricultural environments include: (1) native vegetation is vital for the persistence of birds in these landscapes, and thus is the primary element on which conservation efforts in agricultural landscapes depend; (2) countryside elements can enhance the conservation value of agricultural landscapes by (a) increasing structural complexity in largely cleared areas and (b) increasing the heterogeneity of the entire landscape; and (3) patches of different elements cannot be managed in isolation from their surroundings, as landscape properties affect the richness of bird assemblages in different elements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extent and rapidity of global climate change is the major novel threatening process to biodiversity in the 21 st century. Globally, numerous studies suggest movement of biota to higher latitudes and altitudes with increasing empirical -evidence emerging. As biota responds to the direct and consequent effects of climate change the potential to profoundly affect natural systems (including the reserve system) of south-eastern Australia is becoming evident. Climate change is projected to accelerate major environmental drivers such as drought, fire and flood regimes. Is the reserve system sufficient for biodiversity conservation under a changing climate? Australia is topographically flat, biologically mega-diverse with high species endemism, and has the driest and most variable climate of any inhabited continent. Whilst the north-south orientation and aftitude gradient of eastern Australia's forests and woodlands provides some resilience to projected climatic change, this has been eroded since European settlement, particularly in the cool-moist Bassian zone of the south-east. Following settlement, massive land-use change for agriculture and forestry caused widespread loss and fragmentation of habitats; becoming geriatric in agricultural landscapes and artificially young in forests. The reserve system persists as an archipelago of ecological islands surrounded by land uses of varying compatibility with conservation and vulnerable to global warming. The capacity for biota to adapt is limited by habitat availability. The extinction risk is exacerbated. Re-examination of earlier analysis of ecological connectivity through biolink zones confirms biolinks as an appropriate risk management response within a broader suite of measures. Areas not currently in the reserve system may be critical to the value and ecological function of biological assets of the reserve system as these assets change. Ecological need and the rise of ecosystem services, combined with changing socio-economic drivers of land-use and social values that supported the expansion of the reserve system, all suggest biolink zones represent a new, necessary and viable multi-functional landscape. This paper explores some of the key ecological elements for restoration within biolink zones (and landscapes at large) particularly through currently agricultural landscapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Throughout the world, the increasing use of land for agriculture has been associated with extensive loss and fragmentation of natural habitats and, frequently, the degradation of remaining habitats. The effects of such habitat changes have been well studied for some faunal groups, but little is known of their consequences for bats. The aim of this study was to investigate the ecology and conservation of an assemblage of insectivorous bats in a rural landscape, with particular focus on their foraging and roosting requirements. This increased knowledge will, hopefully, assist the formulation of policy and management decisions to ensure the long-term survival of bats in these altered environments. The distribution and abundance of insectivorous bats in the Northern Plains of Victoria was investigated to determine the impacts of land-use change and to identify factors influencing the distribution of bats in rural landscapes. Thirteen species of insectivorous bats were recorded across the region by sampling at 184 sites. Two species were rare, but the remaining 11 species were widespread and occurred in all types of remnant wooded vegetation, ranging from large blocks (≥200 ha) to small isolated remnants (≤5 ha) and scattered trees in cleared farm paddocks. There was no significant difference between remnant types in the relative abundance of bat species, in species richness, or in the composition of bat assemblages at study sites. In a subsequent study, no difference in the activity levels of bats was found between remnants with different tree densities, ranging from densely-vegetated blocks to single paddock trees. However, sites in open paddocks devoid of trees differed significantly from all types of wooded remnants and had significantly lower levels of bat activity and a different species composition. In highly cleared and modified landscapes, all native vegetation has value to bats, even the smallest remnant, roadside and single paddock tree. Roost sites are a key habitat requirement for bats and may be a limiting resource in highly modified environments. Two species, the lesser long-eared bat Nyctophilus geoffroyi and Gould's wattled bat Chalinolobus gouldii, were investigated as a basis for understanding the capacity of bats to survive in agricultural landscapes. These species have different wing morphologies, which may be influential in how they use the landscape, and anecdotal evidence suggested differences in their roosting ecology. Roosting ecology was examined using radio-tracking to locate 376 roosts in two study areas with contrasting tree cover in northern Victoria. Both species were highly selective in the location of their roosts in the landscape, in roost-site selection and in roosting behaviour, and responded differently to differing levels of availability of roosts. The Barmah-Picola study area incorporated remnant vegetation in farmland and an adjacent extensive floodplain forest (Barmah forest). Male N. geojfroyi roosted predominantly within 3 km of their foraging areas in remnants in farmland. However, most female N. geoffroyi, and both sexes of C. gouldii, roosted in Barmah forest up to 12 km from their foraging areas in farmland remnants. These distances were greater than previously recorded for these species and further than predicted by wing morphology. In contrast, in the second study area (Naring) where only small remnants of wooded vegetation remain in farmland, individuals of both species moved significantly shorter distances between roost sites and foraging areas. There were marked inter- and intra-specific differences in the roosts selected. C. gouldii used similar types of roosts in both areas - predominantly dead spouts in large, live trees. N. geoffroyi used a broader range of roost types, especially in the farmland environment. Roosts were typically under bark and in fissures, with males in particular also using anthropogenic structures. A strong preference was shown by both sexes for roosts in dead trees, and entrance dimensions of roosts were consistently narrow (2.5 cm). In Barmah forest, maternity roosts used by N. geoffroyi were predominantly in narrow fissures in large-diameter, dead trees, while at Naring maternity roosts were also found under bark, in buildings, and in small-diameter, live and dead trees. The number of roost trees that are required for an individual or colony is influenced by the frequency with which bats move between roosts, the proportion of roosts that are re-used, the distance between consecutive roosts, and the size of roosting colonies. Both species roosted in small colonies and regularly shifted roost sites within a discrete roost area. These behavioural traits suggest that a high density of roost sites is required. There were marked differences in these aspects of behaviour between individuals roosting in Barmah forest and in the fragmented rural landscape. At Naring, N. geqffroyi remained in roosts for longer periods and moved greater distances between consecutive roosts than in Barmah forest. In contrast, C. gouldii used a smaller pool of roosts in the farmland environment by re-using roosts more frequently. Within Barmah forest, there is an extensive area of forest but the density of hollow-bearing trees is reduced due to timber harvesting and silvicultural practices. Individuals were selective in the location of their roosting areas, with both species selecting parts of the forest that contained higher densities of their preferred roost trees than was generally available in the forest. In contrast, in farmland at Naring, where there were small pockets of remnant vegetation with high densities of potential roost sites surrounded by cleared paddocks with few roosting opportunities, little selection was shown. This suggests that in Barmah forest the density of trees with potential roosts is lower than optimal, while in farmland roosting resources may be adequate in woodland remnants, but limiting at the landscape scale since more than 95% of the landscape now provides no roosting opportunities. Insectivorous bats appear to be less severely affected than some other faunal groups by habitat fragmentation and land-use change. A highly developed capacity for flight, the spatial scale at which they move and their ability to cross open areas means that they can regularly move among multiple landscape elements, rather than depend on single remnants for all their resources. In addition, bats forage and roost mainly at elevated levels in trees and so are less sensitive to degradation of wooded habitats at ground level. Although seemingly resilient to habitat fragmentation, insectivorous bats are fundamentally dependent on trees for roosting and foraging, and so are vulnerable to habitat loss and ongoing rural tree decline. Protection of the remaining large old trees and measures to ensure regeneration to provide ongoing replacement of hollow-bearing trees through time are critical to ensure the long-term conservation of bats in rural landscapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study confirms the valuable contribution that agricultural landscapes make to bird conservation in Australia. While native vegetation is critical to conservation efforts, careful management of production land-use types may provide additional benefits. Results show that productive farm enterprises can make real contributions to the success of broader conservation goals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined the distribution of native mistletoes in agricultural landscapes. Mistletoes occur in all types of wooded habitat, and provide resources for many species. Landscape structure, particularly the overall extent of tree cover, is vital for conserving mistletoes. Their future status depends on effective management across different land tenures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.

Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Riparian clearing and the removal of wood from channels have affected many streams in agricultural landscapes. As a result, these streams often have depauperate in-stream wood loads, and therefore decreased habitat complexity and lower levels of in-stream biodiversity. The introduction of wood was investigated as a possible rehabilitation technique for agricultural streams. Wood was re-introduced to eight streams in two separate high-rainfall, intensively grazed regions of Victoria, Australia and the effect on aquatic macroinvertebrate communities was measured. The addition of wood increased overall family richness and the richness of most functional feeding groups occupying edge and benthic habitats within the stream. Wood addition led to less overlap between benthic and edge macroinvertebrate communities, suggesting increased habitat heterogeneity within the stream ecosystem. Of all sampled habitats, wood supported the greatest density of families and was colonised by all functional feeding groups. Wood habitats also had the highest overall richness and supported the most taxa that were sensitive to disturbance. These findings suggest that re-introducing wood to agricultural streams is an appropriate rehabilitation technique where those streams are affected by reduced habitat complexity. Additional work is needed to confirm these findings over larger spatial and temporal scales.