6 resultados para Aerosol optical thickness

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the amalgamation mechanisms between mercury and gold is of fundamental interest and importance to many mercury sensing applications. However, there is only limited and piecemeal discussion in the literature of the mechanisms by which Au-Hg amalgams are formed on thin Au films. Here, we present a comprehensive description of a series of morphological changes occurring in a thin polycrystalline Au film during Au-Hg amalgamation investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). These microscopic investigations enable us to offer a coherent explanation for the features and the mechanisms of amalgamation of Hg with Au in the film. We also use an optical technique (fringes of equal chromatic order, FECO) to observe changes in optical thickness and reflectivity of the film. Amalgamation reactions in the film render it inhomogeneous, thus making optical techniques unsuitable as a method for quantitative monitoring of Hg vapor using Au films of this type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a simple experiment which allows unequivocal determination of optical phase change upon reflection of light at the mica-silver interface. While the physical origin of such a phase change at the dielectric-metal interface is well understood to lie in absorption of electromagnetic energy by the metal, inconsistency and ambiguity has persisted as to what its sign and magnitude should be in the field of thin film optics. Most commonly, it has been assigned to be negative for mathematical convenience or just arbitrarily. Our finding shows that with the convention exp(-iωt) for time dependence of the electromagnetic wave, the phase change at the interface between mica and the thin silver film is necessarily positive and its magnitude falls between π and 3π/2 for silver thicknesses down to nanometres. This gives a physically reasonable correspondence to an increased equivalent thickness of the dielectric material, and it clarifies the assignment of interference orders in the harmonic series in a spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To describe the time-course and amplitude of changes to sub-foveal choroidal thickness (SFCT) induced by imposed hyperopic and myopic retinal defocus and to compare the responses in emmetropic and myopic subjects. METHODS: Twelve East Asian subjects (age: 18-34 years; six were emmetropic and six had myopia between -2.00 and -5.00 dioptres (D)) viewed a distant target (video movie at 6 m) for 60 min on two separate occasions while optical coherence tomography (OCT) images of the choroid were taken in both eyes every 5 min to monitor SFCT. On each occasion, one eye was optimally corrected for distance with a contact lens while the other eye wore a contact lens imposing either 2.00 D hyperopic or 2.00 D myopic retinal defocus. RESULTS: Baseline SFCT in myopic eyes (mean ± S.D.): 256 ± 42 μm was significantly less than in emmetropic eyes (423 ± 62 μm; p < 0.01) and was correlated with magnitude of myopia (-39 μm per dioptre of myopia, R(2) = 0.67: p < 0.01). Repeated measures anova (General Linear Model) analysis revealed that in both subject groups, 2.00 D of myopic defocus caused a rapid increase in SFCT in the defocussed eye (significant by 10 min, increasing to approximately 20 μm within 60 min: p < 0.01), with little change in the control eye. In contrast, 2.00 D of hyperopic defocus caused a decrease in SFCT in the experimental eye (significant by 20-35 min. SFCT decreased by approximately 20 μm within 60 min: p < 0.01) with little change in the control eye. CONCLUSIONS: Small but significant changes in SFCT (5-8%) were caused by retinal defocus. SFCT increased within 10 min of exposure to 2.00 D of monocular myopic defocus, but decreased more slowly in response to 2.00 D of monocular hyperopic defocus. In our relatively small sample we could detect no difference in the magnitude of changes to SFCT caused by defocus in myopic eyes compared to emmetropic eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To investigate the relationship between diabetic peripheral neuropathy (DPN) and retinal tissue thickness.

METHODS: Full retinal thickness in the central retinal, parafoveal, and perifoveal zones and thickness of the ganglion cell complex and retinal nerve fiber layer (RNFL) were assessed in 193 individuals (84 with type 1 diabetes, 67 with type 2 diabetes, and 42 healthy controls) using spectral domain optical coherence tomography. Among those with diabetes, 44 had neuropathy defined using a modified neuropathy disability score recorded on a 0-10 scale. Multiple regression analysis was performed to investigate the relationship between diabetic neuropathy and retinal tissue thickness, adjusted for the presence of diabetic retinopathy (DR), age, sex, duration of diabetes, and HbA1c levels.

RESULTS: In individuals with diabetes, perifoveal thickness was inversely related to the severity of neuropathy (p < 0.05), when adjusted for age, sex, duration of diabetes, and HbA1c levels. DR was associated with reduced thickness in parafovea (p < 0.01). The RNFL was thinner in individuals with greater degrees of neuropathy (p < 0.04).

CONCLUSIONS: DPN is associated with structural compromise involving several retinal layers. This compromise may represent a threat to visual integrity and therefore warrants examination of functional correlates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The objective was to investigate full retinal and inner retinal thickness in individuals with type 1 and type 2 diabetes. METHODS: Eighty-four individuals with type 1 diabetes (T1DM), 67 individuals with type 2 diabetes (T2DM) and 42 non-diabetic individuals (control group) were enrolled. Participants underwent full retinal thickness evaluation in the central retinal, parafoveal and perifoveal zones and in the retinal nerve fibre layer (RNFL) and ganglion cell complex (GCC), using spectral domain optical coherence tomography. As a preliminary step, the key variables of interest - age, sex, diabetic retinopathy (DR), duration of diabetes and HbA1c levels - were analysed and compared between the three groups. Full retinal thickness, RNFL and GCC thicknesses were also compared between the groups. The relationship between the type of diabetes and retinal tissue thickness was explored, adjusting for the five potential confounders. RESULTS: Compared to individuals with T1DM, individuals with T2DM had significantly reduced full retinal thickness in the parafovea and perifovea and reduced RNFL and GCC thickness. The mean differences were six (p = 0.020), seven (p = 0.008), six (p = 0.021) and four micrometres (p = 0.013) for the parafovea, perifovea, RNFL and GCC thicknesses, respectively. Thicknesses within the central zone (p = 0.018) and at the parafovea (p = 0.007) were significantly reduced in T2DM when compared to the control group. After adjusting for age, sex, diabetic retinopathy, duration of diabetes and HbA1c levels, the relationship between type of diabetes and retinal tissue thickness was not statistically significant (p > 0.056). CONCLUSION: Retinal tissue thickness is not significantly different between type 1 and type 2 diabetes, when adjusted for age, sex, diabetic retinopathy, duration of diabetes and HbA1c levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To examine the retinal thickness profiles of individuals with and without diabetic retinopathy (DR).

METHODS: Full retinal thickness in the central zone, overall and hemisphere thicknesses of the parafovea and perifovea, ganglion cell complex (GCC) thickness and retinal nerve fibre layer (RNFL) thickness were assessed in 185 individuals using spectral domain optical coherence tomography (88 individuals with diabetes but no DR, 55 with DR, and 42 non-diabetic controls). The DR group comprised of 60% of participants with very mild non-proliferative diabetic retinopathy (NPDR) (representing microaneurysms only) and 40% with mild NPDR (hard exudates, cotton-wool spots, and/or mild retinal haemorrhages). Regression analysis was performed to determine the factors associated with retinal tissue thickness, taking into account, age, sex, presence of DR, duration of diabetes, HbA1c levels and type of diabetes.

RESULTS: The mean (S.D.) of the overall parafoveal thickness was 306 (16) in the DR group and 314 (14) in the control group (p = 0.02). The mean (S.D.) of the superior hemisphere parafoveal thickness was 309 (16) in the DR group and 318 (14) in the control group (p = 0.02). The mean (S.D.) of the inferior hemisphere parafoveal thickness was 303 (17) in the DR group and 311 (15) in the control group (p = 0.02). There were no significant differences in retinal thickness between groups in the central zone (p = 0.27) or perifovea (p > 0.41). Neither the overall nor the hemisphere RNFL (p > 0.75) and GCC thickness (p > 0.37) were significantly different between the groups. Regression analysis revealed that parafoveal thickness in diabetic individuals was reduced in association with presence of DR (B = -5.9 μm, p = 0.02) and with advancing age (B = -4.5 μm, p = 0.004, for every 10 year increase in age) when adjusted for sex, duration of diabetes, HbA1c levels and type of diabetes.

CONCLUSION: The inner macula is thinner in the presence of clinical signs of diabetic retinopathy and is compounded by advancing age. The influence of any macular oedema or that by cotton-wool spots could not be ruled out and may still confound these results.