28 resultados para Aerodynamic loads

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A testing facility for combustion of biomass and sampling of emissions has been established at Deakin University. In this pilot project using this facility, four kinds of locally grown wood species were burned and the particle emissions sampled and analysed for Polycyclic Aromatic Hydrocarbons (PAHs). The selected wood species covering pine, red gum, yellow box and sugar gum, are the most popular domestic fuel wood in Australia. Particulate matter emissions from burning of each load of wood were sampled from the flue using a standard stack emission sampling train. The particle-laden filters were extracted and the .extract analysed to determine PAH concentrations by Gas Chromatographyl Mass Spectrometer (Gc/MS). The sampling was conducted under two different burning conditions with the air inlet of the combustion chamber fully open and with it half open. A suite of 15 PAHs, ranging from naphthalene (C IOHB) to dibenzolahlanthracene (C12H14), were selected for analysis. PAH profiles for the four wood species, under the different burning regimes, have been generated. Some preliminary emission factors for the different wood species have been derived as microgram of summed PAHs (rPAHs) emittedlkilogram of wood burned. Total Particulate Matter (TPM) emission factors were also obtained from gravimetric measurement of the sample filter before and after the combustion. Based on these emission factors, pine displayed the highest level of rPAHs emitted from the combustion of the four wood species, with sugar gum showing the lowest level of rPAHs emission. Emission factors associated with the slow burning condition clearly showed higher l:PAH levels compared to the faster burning condition. During the faster burning condition, red gum and pine show a higher percentage of rPAH to TPM than sugar gum or yellow box. Under the slower burning. the l:PAHlTPM ratio in every case was greater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The positioning error of a large cantilevered mass that is actuated at its supported end is minimized as this mass travels at challenging high speeds and accelerations. An integrated approach is adopted to realize the task. After selecting the appropriate actuator that would provide higher rigidity, the system is viewed as a multi-degree of freedom system, and hence the concept of system-generated disturbance is introduced. This allows the use of appropriate mechanical design considerations and a proper generation of the kinematics commands to minimize such disturbance. A disturbance observer is then designed to detect and compensate the remaining disturbance, hence minimizing the positioning error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analytical model of fuel consumption (AMFC) to coordinate the driving power and manage the overall fuel consumption for an internal combustion engine vehicle. The model calculates the different loads applied on the vehicle including road-slope, road-friction, wind-drag, accessories, and mechanical losses. Also, it solves the combustion equation of the engine under different working conditions including various fuel compositions, excess airs and air inlet temperatures. Then it determines the contribution of each load to signify the energy distribution and power flows of the vehicle. Unlike the conventional models in which the vehicle speed needs to be given as an input, the developed model can predict the vehicle speed and acceleration under different working conditions by allowing the speed to vary within a predefined range only. Furthermore, the model indicates the ways to minimises the vehicles' fuel consumption under various driving conditions. The results show that the model has the potential to assist in the vehicle energy management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To exploit the benefits offered by parallel HEVs, an intelligent energy management model is developed and evaluated in this paper. Despite most existing works, the developed model incorporates combined wind/drag, slope, rolling, and accessories loads to minimise the fuel consumption under varying driving conditions. A slope prediction unit is also employed. The engine and the electric motor can output power simultaneously under a heavy-load or a slopped road condition. Two simulation were conducted namely slopped-windy-prediction and slopped-windy-prediction-hybrid. The results indicate that the vehicle speed and acceleration is smoother where the hybrid component was included. The average fuel consumption for the first and second simulations were 7.94 and 7.46 liter/100 km, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use change and its impacts on nutrient loads were investigated for the Glenelg-Hopkins Catchment in south-west Victoria, Australia. The study involved a cross-disciplinary approach comprising of remote sensing, Geographical Information Systems, spatial and statistical modelling to identify relationships between land use and stream water quality over a large regional catchment of 27,000 square kilometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT), a novel surface severe plastic deformation method, was carried out for titanium (Ti) to create a gradient-structured Ti (SMAT Ti). The tribological behaviour was studied under different loads and dry sliding conditions. The results showed that the deformation layer of SMAT Ti was about 160 μm. The friction and wear results showed that the wear resistance of SMAT Ti was enhanced compared to the coarse-grained (CG) counterpart. SMAT Ti showed abrasive wear under 1 and 5 N, and exhibited abrasive and adhesive wear under 2 N. While CG Ti showed abrasive and adhesive wear under 1-2 N, and exhibited abrasive wear under 5 N for the work hardening effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) and challenged by untreated stormwater collected from the hard-pan and other surfaces of a dairy processing factory in south-west Victoria, Australia. The hydraulic loading rate was tested at two levels, sequentially, 3.75 and 7.5 cm day -1. Some of the monitored variables were removed more efficiently by the planted beds in comparison to unplanted CWs (biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP); p<0.007) but there was no significant difference between the A. donax and P. australis CWs in removal of BOD, suspended solids (SS) and TN (p>0.007) at 3.75 cm day -1 or SS and TN at 7.5 cm day -1. At 3.75 cm day -1, BOD, SS, TN and TP removal in the A. donax and P. australis CWs was 71%, 61%, 78% and 75% and 65%, 60%, 73% and 41%, respectively. Nutrient removal at 7.5 cm day -1 in the A. donax and P. australis beds was 87%, 91%, 84% and 71% and 96%, 94%, 87% and 55%, respectively. As expected, the A. donax CWs produced considerably more biomass (10±1.2 kg wet weight) than the P. australis CWs (2.7±1.2 kg wet weight). This equates to approximately 107 and 36 tonnes ha -1 year -1 biomass (dry weight) for A. donax and P. australis, respectively (assuming 250 days of growing season and singlecut harvest). The performance similarity of the A. donax- and P. australis-planted CWs indicates that either may be used in HSSF wetlands treating dairy factory stormwater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large corpus of data obtained by means of empirical study of neuromuscular adaptation is currently of limited use to athletes and their coaches. One of the reasons lies in the unclear direct practical utility of many individual trials. This paper introduces a mathematical model of adaptation to resistance training, which derives its elements from physiological fundamentals on the one side, and empirical findings on the other. The key element of the proposed model is what is here termed the athlete’s capability profile. This is a generalization of length and velocity dependent force production characteristics of individual muscles, to an exercise with arbitrary biomechanics. The capability profile, a two-dimensional function over the capability plane, plays the central role in the proposed model of the training-adaptation feedback loop. Together with a dynamic model of resistance the capability profile is used in the model’s predictive stage when exercise performance is simulated using a numerical approximation of differential equations of motion. Simulation results are used to infer the adaptational stimulus, which manifests itself through a fed back modification of the capability profile. It is shown how empirical evidence of exercise specificity can be formulated mathematically and integrated in this framework. A detailed description of the proposed model is followed by examples of its application—new insights into the effects of accommodating loading for powerlifting are demonstrated. This is followed by a discussion of the limitations of the proposed model and an overview of avenues for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: A systematic approach to managing the training of elite athletes is supported by accurate training load measurement. However, quantifying the training of elite Australian rowers is complex due to unique challenges: 1) the multi-centre, multi-state structure of the national program; 2) the variety of training undertaken, incorporating rowing-specific and non-specific modalities, with continuous and interval efforts that span the full intensity spectrum; and 3) the limitations of existing quantification methods for capturing total training loads undertaken from varied training. These challenges highlighted a need to create a consistent, location-independent framework for prescribing training in elite rowing, with a capacity to account for varied training. Methods: An in-house proprietary measure (the T2minute method) was developed at the National Rowing Centre of Excellence (NRCE), as a collaborative project between sport scientists and national squad coaches. The design phase was informed by assessments of the existing training measures, and built upon standardised intensity zones established at the Australian Institute of Sport. A common measurement unit was chosen: one T2minute equates to one minute of on-water single scull rowing at T2 intensity (∼60–72% VO2max). Each intensity zone was assigned a weighting factor according to the curvilinear relationship between power output, intensity, and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be “harder” or “easier” than onwater rowing. With coaches’ feedback, the method was refined over a period of five months. The T2minute method was implemented as the core framework for prescribing training for elite Australian rowers throughout the 2009–2012 Olympic cycle. Results: The implementation of the T2minute method successfully established consistency with training prescription and monitoring practices within the NRCE high performance program. The national roll out this method has influenced rowing training methodology at elite and sub-elite levels in Australia. Since implementation, the method has undergone scientific validation. Further research is underway, utilising the method to explore complex relationships between rowers’ training and performance outcomes. Conclusion: The T2minute method is a novel approach that allows rowing coaches and sport scientists to utilise one consistent system to quantify load from varied training. Its implementation represents a considerable achievement in establishing a common framework for managing the training process within a complex organisational structure. This collaborative approach used to develop the T2minute method provides unique insight into the important considerations and practical challenges of applying training science to enhance elite sport performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates small-signal stability of a distribution system with distributed generator and induction motor load, as a dynamic element. The analysis is carried out over a distribution test system with different types of induction motor loads. The system is linearised by the perturbation method. Eigenvalues and participation factors are calculated to see the modal interaction of the system. The study indicates that load voltage dynamics significantly influence the damping of a newly identified voltage mode. This mode has frequency of oscillation between the electromechanical and subsynchronous oscillation of power systems. To justify the validity of the modal analysis time domain simulation is also carried out. Finally, significant parameters of the system that affect the damping and frequency of the oscillation are identified.