9 resultados para Active layer depth

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This paper presents the development of a two-dimensional model of multilayer bulk heterojunction organic nanoscale solar cells, consisting of the thickness of active layer and morphology of the device. The proposed model is utilized to optimize the device parameters in order to achieve the best performance using particle swarm optimization algorithm. The organic solar cells under research are from poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester type which are modelled to be investigated for performance enhancement. A three-dimensional fitness function is proposed involving domain size and active layer thickness as variables. The best results out of 20 runs of optimization show that the optimized value for domain size is 17 nm, while the short-circuit current vs. voltage characteristic shows a very good agreement with the experimental results obtained by previous researchers. © 2014 Springer Science+Business Media New York

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular dynamics (MD) together with the adaptive biasing force (ABF) and metadynamics free energy calculation methods was used to investigate the permeation properties of salt water through poly(amide) thin film composite reverse osmosis membranes. The thin films were generated by annealing an amorphous cell of poly(amide) chains through an MD method. The MD results showed they have typical structural properties of the active layer of thin film composite membranes and comparable water diffusivity (2.13×10-5cm2/s for the film with a density of 1.06g/cm3) and permeability (9.27×10-15cm3cm/cm2sPa) to experimental data. The simulations of water permeation through the films under different transmembrane pressures revealed the behaviours of water molecules in the thin films and the dynamic regimes of water permeation, including Brownian diffusion, flush and jump diffusion regimes. The intermolecular interactions of water and ions with poly(amide) chains showed a strong dependence on the local structure of films. The attraction between water and ploy(amide) molecules can be up to 8.5kcal/mol in dense polymer regions and 5kcal/mol in the pores of about 3nm. The ABF and metadynamics simulations produced the profiles of free energy potential of water and ions along the depth of the thin films, which provided important information for quantitatively determining the barrier energy required for water permeation and rejection of ions. The thin film with a density of 1.06g/cm3 and a thickness of 6nm offers a rejection to Na+ but a slight absorption of Cl- (0.25kcal/mol) at 0.3-0.4nm distance to its surface. Water molecules must overcome 63kcal/mol energy to move to the centre of the film. The dependences of the barrier energy and the water-polymer interaction energy on the local free volume size in the thin film were analysed. The simulations of water permeation under high transmembrane pressures showed a nonlinear response of the concentration and distribution of water molecules in the film to the imposed pressure. Compaction of the film segments close to the porous substrate and water congestion in dense regions significantly influenced the water permeation when the membrane was operated under pressures of more than 3.0MPa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we have demonstrated that randomly-oriented electrospun PVDF nanofiber nonwovens can be used directly as an active layer to generate electrical power with a voltage output as high as 4 volt and current 4 micoramp scales on a small nonwoven piece. This discovery may provide a simple, efficient, cost-effective and flexible solution to self-powering of microelectronics for various purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Randomly oriented poly(vinylidene fluoride) (PVDF) nanofibre webs prepared by a needleless electrospinning technique were used as an active layer for making mechanical-to-electrical energy harvest devices. With increasing the applied voltage in the electrospinning process, a higher b crystal phase was formed in the resulting PVDF nanofibres, leading to enhanced mechanical-to-electrical energy conversion of the devices. The power generated by the nanofibre devices was able to drive a miniature Peltier cooler, which may be useful for the development of mechanically driven cooling textile. In addition, the needleless electrospinning also showed great potential in the production of nanofibres on a large scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) nanofiber mats prepared by an electrospinning technique were used as an active layer for making mechanical-to-electric energy conversion devices. The effects of PVDF concentration and electrospinning parameters (e.g. applied voltage, spinning distance), as well as nanofiber mat thickness on the fiber diameter, PVDF β crystal phase content, and mechanical-to-electrical energy conversion properties of the electrospun PVDF nanofiber mats were examined. It was interesting to find that finer uniform PVDF fibers showed higher β crystal phase content and hence, the energy harvesting devices had higher electrical outputs, regardless of changing the electrospinning parameters and PVDF concentration. The voltage output always changed in the same trend to the change of current output whatever the change trend was caused by the operating parameters or polymer concentration. Both voltage and current output changes followed a similar trend to the change of the β crystal phase content in the nanofibers. The nanofiber mat thickness influenced the device electrical output, and the maximum output was found on the 70 μm thick nanofiber mat. These results suggest that uniform PVDF nanofibers with smaller diameters and high β crystal phase content facilitate mechanical-to-electric energy conversion. The understanding obtained from this study may benefit the development of novel piezoelectric nanofibrous materials and devices for various energy uses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Priest Pot is an example of the abundant ponds that, collectively, contribute crucially to species diversity. Despite extensive biological study, little has been reported about the physical framework that supports its ecological richness. This article elucidates the physical character of Priest Pot’s water column and thus that of similar water bodies. Vertical thermal microstructure profiles were recorded during summer 2003 and analyzed alongside concurrent meteorological data. During summer stratification, the thermal structure appeared to be dominated by surface heat fluxes. Surface wind stress, limited by sheltering vegetation, caused turbulent overturns once a surface mixed layer was present but appeared to contribute little to setting up the thermal structure. Variations in full-depth mean stratification occurred predominantly over seasonal and ∼5-day time scales, the passage of atmospheric pressure systems being posited as the cause of the latter. In the uppermost ∼0.5 m, where the stratification varied at subdaily time scales, turbulence was active (sensu Ivey and Imberger 1991) when this layer was mixed, with dissipation values ε ∼ 10−8 m2 s−3 and vertical diffusivity KZ = 10−4 — 10−6 m2 s−1. Where the water column was stratified, turbulence was strongly damped by both buoyancy and viscosity, and KZ was an order of magnitude smaller. Vertical transport in the mixed layer occurred via many small overturns (Thorpe scale r.m.s. and maximum values were typically 0.02 m and 0.10 m, respectively), and seston were fully mixed through the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nanocrystalline (NC) layer with the thickness of 30 µm was produced on pure titanium surface by surface mechanical attrition treatment (SMAT). Microstructure observation indicated that the grain size increases with depth from the treated surface. The friction coefficient decreases and the wear resistance increases with the SMAT sample as compared to its coarse-grained counterpart. The improvement of the wear properties could be attributed to the higher hardness of SMAT sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Increasing children's participation in physical activity and decreasing time spent in sedentary behaviours is of great importance to public health. Despite living in disadvantaged neighbourhoods, some children manage to engage in health-promoting physical activity and avoid high levels of screen-based activities (i.e. watching TV, computer use and playing electronic games). Understanding how these children manage to do well and whether there are unique features of their home or neighbourhood that explain their success is important for informing strategies targeting less active and more sedentary children. The aim of this qualitative study was to gain in-depth insights from mothers regarding their child's resilience to low physical activity and high screen-time.

Methods Semi-structured face-to-face interviews were conducted with 38 mothers of children who lived in disadvantaged neighbourhoods in urban and rural areas of Victoria, Australia. The interviews were designed to gain in-depth insights about perceived individual, social and physical environmental factors influencing resilience to low physical activity and high screen-time.

Results Themes relating to physical activity that emerged from the interviews included: parental encouragement, support and modelling; sports culture in a rural town; the physical home and neighbourhood environment; child's individual personality; and dog ownership. Themes relating to screen-time behaviours encompassed: parental control; and child's individual preferences.

Conclusions The results offer important insights into potential avenues for developing ‘resilience’ and increasing physical activity and reducing screen-time among children living in disadvantaged neighbourhoods. In light of the negative effects of low physical activity and high levels of screen-time on children's health, this evidence is urgently needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muslim Active Citizenship in the West investigates the emergence and nature of Muslims’ struggle for recognition as full members of society in Australia, Great Britain and Germany. What actions have been taken by Muslims to achieve equal civic standing? How do socio-political and socio-economic factors impact on these processes? And how do Muslims negotiate their place in a society that is often regarded as sceptical – if not hostile – towards Muslims’ desire to belong? This book sheds new light on Muslims’ path towards citizenship in Australia, Great Britain and Germany. Existing research and statistics on Muslims’ socio-economic status, community formation, claim-making and political responses, and the public portrayal of Islam are systematically examined. These insights are tested ‘through the eyes of Muslims’, based on in-depth interviews with Muslim community leaders and other experts in all three countries. The findings offer unique perspectives on Muslim resilience to be recognised as equal citizens of Islamic faith in very different socio-political national settings. Pursuing an interdisciplinary and comparative approach, this book examines the country-specific interplay of historical, institutional, political, and identity dimensions of Muslims’ active citizenship and will be invaluable for students and researchers with an interest in Sociology, Religious Studies and Political Science.