7 resultados para Activation-relaxation technique

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic mechanical thermal analysis (DMTA) has been used to study the effects of plasticizers on the mobility and homogeneity of a series of solid polymer electrolytes (SPEs). With reference to previously published results on similar systems containing LiClO4 salts and tetraglyme as plasticizer, the effects of propylene carbonate (PC) on the glass transition temperature (Tg) of the SPE and on the distribution of relaxation times within the sample are discussed; at low plasticizer concentration PC has little effect on Tg as measured by DMTA in comparison with tetraglyme, and at higher plasticizer concentrations PC significantly broadens the mechanical relaxation behaviour indicating a greater degree of dynamical heterogeneity within the sample. A second low temperature relaxation is evident at lower PC contents indicating that some regions of this plasticized SPE are distinctly more mobile than others or perhaps, on this length scale, that some degree of phase separation is present. Activation energies for the mechanical relaxation were also determined as a function of PC concentration and are significantly greater than those determined from conductivity measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hollow fibre membranes of mixed conducting perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were prepared via the combined phase inversion and sintering technique. The fibres were tested for air separation with a home-made reactor under the oxygen partial pressure gradient generated by the air/He streams. Some fibres were in situ activated by introducing methane in the He sweeping gas at high temperatures. The activated membranes with new morphology were created by transforming the inner densified surface layer to a porous structure. Compared to the original membranes, the activated gave appreciable higher oxygen fluxes. At 800 °C, the oxygen fluxes were increased by a factor of 10 after activation was carried out at 1000 °C for 1 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although plyometric training is widely used by sports coaches as a method of improving explosive power in athletes, many prescribe volumes in excess of the National Strength and Conditioning Association recommendations. The purpose of this study was to assess voluntary and evoked muscle characteristics to assess the neuromuscular impact of a high-volume bout of plyometric exercise that was non-exhaustive. Ten athletes who did not have plyometric training experience and were in their competitive season for club-level sport volunteered for the study. After at least 2 days without high-intensity activity, subjects were assessed on maximal twitch torque, time to peak torque, rate of twitch torque development, twitch half-relaxation time, rate of twitch relaxation, and voluntary activation by the interpolated twitch technique before, immediately after, and 2 hours after a high-volume plyometric training program (212 ground contacts). Data were analyzed by repeated-measures analysis of variance and described as mean +/- SD and Cohen d. Statistically significant decrements appeared immediately after the training protocol in the total torque generated by maximal voluntary contractions (p < 0.05, d = -0.51) and twitch (p < 0.01, d = -0.92), rate of twitch torque development (p < 0.01, d = -0.77), and rate of relaxation (p < 0.01, d = -0.73). However, we did not observe any differences that remained statistically different after 2 hours. There were no significant differences observed at any time point in time to peak twitch, half-relaxation time, or voluntary activation. We conclude that high-volume plyometric training results primarily in peripheral fatigue that substantially impairs force and rate of force development. We recommend that coaches carefully monitor the volume of plyometric training sessions to avoid neuromuscular impairments that can result in suboptimal training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten resistance trained (RT) and 6 non-resistance trained (NRT) subjects were used to determine differences in quadriceps activation between isometric single and double knee extensions and squat contractions. Greater inactivation, as measured by the interpolated twitch technique, was recorded with single (RT: 16.5%, NRT: 17.6%) than double leg extensions (RT: 8.4%, NRT: 13.4%) or squats (RT: 4.03%, NRT: 1.7%). There was no significant difference between the maximum voluntary contraction (MVC) force of the dominant leg during single and double leg extensions. However, in NRT subjects, the contralateral or non-dominant leg during double leg extensions exhibited significantly less force than the dominant leg (715.9 vs 566.9 N). This deficit may be due to a lesser reliance on the non-dominant limb. The contractions of multiple lower body muscle groups enhanced the activation of the dominant quadriceps. Greater levels of activation may be necessary to cope with the stabilization necessary for bilateral and multi-articular contractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate different methods of estimating muscle inactivation, derived from single and multiple voluntary contractions. Ten subjects performed maximal and submaximal leg extensor contractions to determine an interpolation (IT) or central activation ratio (CAR). A superimposed evoked force was compared with the force output of either a voluntary (CAR) or resting evoked contraction (IT ratio), or the ratios were inserted into regression equations (linear, polynomial, exponential). Linear-regression estimates of CAR using doublets and tetanus provided physiologically inaccurate values. Whereas IT ratios using doublets (IT-doublet) and tetanus (IT-tetanus) had a significant difference in only one interaction, IT-tetanus and CAR using a tetanus (CAR-tetanus) estimates provided the most extensive correlation within and between measures. Thus, tetanic stimulation superimposed upon single maximal or multiple contractions seems to provide the most valid measure of muscle inactivation when using the interpolated-twitch technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.