25 resultados para Acrylic acid

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun polyelectrolyte hydrogel nanofibres are being developed for many applications including artificial muscles, scaffolds for tissue engineering, wound dressings and controlled drug release. For electrospun polyelectrolytes, a post-spinning crosslinking process is necessary for producing a hydrogel. Typically, radiation or thermal crosslinking routines are employed that require multifunctional crosslinking molecules and crosslink reaction initiators (free radical producers). Here, ultraviolet subtype-C (UVC) radiation was employed to crosslink neat poly(acrylic acid) (PAA) nanofibres and films to different crosslink densities. Specific crosslink initiators or crosslinking molecules are not necessary in this fast and simple process providing an advantage for biological applications. Scanning probe microscopy was used for the first time to measure the dry and wet dimensions of hydrogel nanofibres. The diameters of the swollen fibres decrease monotonically with increasing UVC radiation time. The fibres could be reversibly swollen/contracted by treatment with solutions of varying pH, demonstrating their potential as artificial muscles. The surprising success of UVC radiation exposure to achieve chemical crosslinks without a specific initiator molecule exploits the ultrathin dimensions of the PAA samples and will not work with relatively thick samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogel nanofibers with high water-absorption capacity and excellent biocompatibility offer wide use in biomedical areas. In this study, hydrogel nanofibers from polyvinylpyrrolidone (PVP) and PVP/poly(acrylic acid) (PAA) blend were prepared by electrospinning and by subsequent heat treatment. The effects of post-electrospinning heat treatment and PVP/PAA ratio on hydrogel properties of the nanofibers were examined. Heat treatment at a temperature above 180°C was found to play a key role in forming insoluble and water-absorbent nanofibers. Both PVP and PVP/PAA nanofibers showed high morphology stability in water and excellent water retention capacity. The swelling ratio of PVP/PAA nanofibers declined with increasing heating temperature and decreasing PVP/PAA unit ratio. In comparison with dense casting films, these nanofiber membranes showed nearly doubled swelling ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of rare flower like micelles in poly(styrene)-block-poly(4-vinyl pyridine)/poly(acrylic acid) (PS-b-P4VP/PAA) diblock copolymer/homopolymer complexes is reported. The self-assembly as well as the morphological changes in the complexes were induced by the addition of a high molecular weight PAA/ethanol solution into the PS-b-P4VP solution in dimethyl formamide followed by dialyses. The composition-dependent micelles were varying in size and shape with increase in PAA concentration in solution. The complex aggregates in solution were characterized by dynamic light scattering (DLS) whereas morphologies in the solid complexes were observed using transmission electron microscopy (TEM). Flower like micelles are formed in complexes at 20 wt% PAA concentration followed by 'spikey' micellar assemblies at 40 wt% PAA. The size of the micelles was found to be increased upon the addition of PAA into the block copolymer solution. Infrared studies revealed the intermolecular hydrogen bonding interactions between the complementary binding sites on PAA and the P4VP block of the block copolymer. Finally, a model was proposed to explain the self-assembly and morphological transitions in these complexes based on the experimental results obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a non-renewable resource, the rational exploitation of oil has attracted a large amount of attention. Among many methods for enhanced oil recovery, polymer flooding is the most suitable method of chemical flooding for non-marine reservoirs and therefore various modified acrylamide-based copolymers have been studied. In this study, a novel α-aminophosphonic acid-modified hydrophobic associating copolymer was successfully synthesized by copolymerization of acrylamide, acrylic acid, N-allyldodecanamide and 1-(dimethylamino)allylphosphonic acid. The copolymer was characterized by FT-IR, 1H NMR and thermogravimetry and exhibited superior water solubility and thickening capability. Subsequently, the shear resistance, temperature resistance and salt tolerance of the copolymer solution were investigated. The value of apparent viscosity retention of a 2000 mg L-1 copolymer solution was as high as 58.55 mPa s at a shear rate of 170 s-1 and remained at 40.20 mPa s at 120 °C. The values of apparent viscosity retention of 55.41 mPa s, 59.95 mPa s and 52.97 mPa s were observed in solutions of 10000 mg L-1 NaCl, 1200 mg L-1 MgCl2, and 1200 mg L-1 CaCl2, respectively. These were better than those of partially hydrolyzed polyacrylamide under the same conditions. In addition, an increase of up to 14.52% in the oil recovery rate compared with that for water flooding could be achieved in a core flooding test using a 2000 mg L-1 copolymer solution at 65 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

pH sensitive graphene−polymer composites have been prepared by the modification of graphene basal planes with pyrene-terminated poly(2-N,N′-(dimethyl amino ethyl acrylate) (PDMAEA) and poly(acrylic acid) (PAA) via π−π stacking. The pyrene-terminal PDMAEA and PAA were synthesized using reversible addition−fragmentation chain transfer (RAFT) polymerization with a pyrene-functional RAFT agent. The graphene−polymer composites were found to demonstrate phase transfer behavior between aqueous and organic media at different pH values. Atomic force microscopy (AFM) analysis revealed that the thicknesses of the graphene−polymer sheets were approximately 3.0 nm when prepared using PDMAEA (Mn: 6800 and PDI: 1.12). The surface coverage of polymer chains on the graphene basal plane was calculated to be 5.3 × 10−11 mol cm−2 for PDMAEA and 1.3 × 10−10 mol cm−2 for PAA. The graphene−polymer composites were successfully characterized using X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and thermogravimetric analysis (TGA). Self-assembly of the two oppositely charged graphene−polymer composites afforded layer-by-layer (LbL) structures as evidenced by high-resolution scanning electron microscopy (SEM) and quartz crystal microbalance (QCM) measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report for the first time multiple vesicular morphologies in block copolymer complexes formed in aqueous media via hydrogen bonding interactions. A model AB/AC diblock copolymer system consisting of polystyrene-block- poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) was examined using transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on PAA and PEO blocks of the two diblock copolymers. Upon the addition of PS-b-PEO, a variety of bilayer aggregates were formed in PS-b-PAA/PS-b-PEO complexes including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. Among these aggregates, ICCVs were observed as a new morphology. The morphology of aggregates was correlated with respect to the molar ratio of PEO to PAA. At [EO]/[AA] = 0.5, vesicles were observed, while MLVs were obtained at [EO]/[AA] = 1. TWVs and ICCVs were formed at [EO]/[AA] = 2 and 6, respectively. When [EO]/[AA] reached 8 and above, only irregular aggregates appeared. These findings suggest that complexation between two amphiphilic diblock copolymers is a viable approach to prepare polymer vesicles in aqueous media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well-known that the self-assembly of block copolymers either in water or in organic solvents can form a wide range of morphologies in nanometer dimensions depending on its chemical nature. In the present study, the complexation and aggregate morphologies in a model AB/AC diblock copolymer system consisting of polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) in water were studied using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and dynamic light scattering (DLS). By varying the relative amounts of the two block copolymers, a variety of bilayer aggregates were formed, including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. The hydrophobic PS blocks were segregated as the cores while the hydrogen bonded PEO and PAA blocks formed the coronae of bilayer aggregates. We also investigate how the addition of PS-b-PEO into PS-b-PAA solutions influences the aggregate morphology of the resulting complexes. This work introduces a viable route to multicompartment vesicles in aqueous solutions. The formation of block copolymer vesicles in water is of particular interest because of their potential in various applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growing interest in polymeric nanofibers has been increasing the push for the development of simple and efficient nanofiber-preparation techniques. We herein describe how a conventional solution process is readapted to suit the needs for fast and efficient production of short polymeric nanofibers. Poly(ethylene-co-acrylic acid) (PEAA), a semi-crystalline polymer, was used as model. When a PEAA solution was injected into an alcoholic non-solvent while simultaneously applying high shear to the non-solvent system, PEAA nanofibers were obtained with average diameter as thin as 113 nm and length as short as 4.5 _m. The fiber diameter and length were also adjustable by varying the operating parameters. This one-step technique advances the currently available nanofabrication tools by adjusting a widely accepted concept to the nano-scale. It may constitute a viable method for large-scale production of short polymeric nanofibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrically conductive, mechanically tough hydrogels based on a double network (DN) comprised of poly(ethylene glycol) methyl ether methacrylate (PPEGMA) and poly(acrylic acid) (PAA) were produced. Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically polymerized within the tough DN gel to provide electronic conductivity. The effects of pH on the tensile and compressive mechanical properties of the fully swollen hydrogels, along with their electrical conductivity and swelling ratio were determined. Compressive and tensile strengths as high as 11.6 and 0.6 MPa, respectively, were obtained for hydrogels containing PEDOT with a maximum conductivity of 4.3 S cm–1. This conductivity is the highest yet reported for hydrogel materials of high swelling ratios. These hydrogels may be useful as soft strain sensors because their electrical resistance changed significantly when cyclically loaded in compression.