18 resultados para Acrylate copolymers

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers were successfully prepared. Two samples of PEO-PPO-PEO triblock copolymer with different ethylene oxide (EO) contents, denoted as EO30 with 30 wt % EO content and EO80 with 80 wt % EO content, were used to form the self-organized thermoset blends of varying compositions using 4,4'-methylenedianiline (MDA) as curing agent. The phase behavior, crystallization, and morphology were investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). It was found that macroscopic phase separation took place in the MDA-cured ER/EO30 blends containing 60-80 wt % EO30 triblock copolymer. The MDA-cured ER/EO30 blends with EO30 content up to 50 wt % do not show macroscopic phase separation but exhibit nanostructures on the order of 10-30 nm as revealed by both the TEM and SAXS studies. The AFM study further shows that the ER/EO30 blend at some composition displays structural inhomogeneity at two different nanoscales and is hierarchically nanostructured. The spherical PPO domains with an average size of about 10 nm are uniformly dispersed in the 80/20 ER/EO30 blend; meanwhile, a structural inhomogeneity on the order of 50-200 nm is observed. The ER/EO80 blends are not macroscopically phase-separated over the entire composition range because of the much higher PEO content of the EO80 triblock copolymer. However, the ER/EO80 blends show composition-dependent nanostructures on the order of 10-100 nm. The 80/20 ER/EO80 blend displays hierarchical structures at two different nanoscales, i.e., a bicontinuous microphase structure on the order of about 100 nm and spherical domains of 10-20 nm in diameter uniformly dispersed in both the continuous microphases. The blends with 60 wt % and higher EO80 content are completely volume-filled with spherulites. Bundles of PEO lamellae with spacing of 20-30 nm interwoven with a microphase structure on the order of about 100 nm are revealed by AFM study for the 30/70 ER/EO80 blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of new conjugated copolymers containing a donor (thiophene)−acceptor (2-pyran-4-ylidene-malononitrile) was synthesized via Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, elemental analysis, GPC, TGA, and DSC. UV−vis spectra indicated that the increase in the content of the thiophene units increased the interaction between the polymer main chains to cause a red-shift in the optical absorbance. Cyclic voltammetry was used to estimate the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and the band gap (Eg) of the copolymers. The basic electronic structures of the copolymers were also studied by DFT calculations with the GGA/B3LYP function. Both the experimental and the calculated results indicated an increase in the HOMO energy level with increasing the content of thiophene units, whereas the corresponding change in the LUMO energy level was much smaller. Polymer photovoltaic cells of a bulk heterojunction were fabricated with the structure of ITO/PEDOT/PSS (30 nm)/copolymer−PCBM blend (70 nm)/Ca (8 nm)/Al (140 nm). It was found that the open-circuit voltage (Voc) increased (up to 0.93 V) with a decrease in the content of thiophene units. Although the observed power convention efficiency is still relatively low (up to 0.9%), the corresponding low fill factor (0.29) indicates considerable room for further improvement in the device performance. These results provided a novel concept for developing high Voc photovoltaic cells based on donor-π-acceptor conjugated copolymers by adjusting the donor/acceptor ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multinuclear pulsed field gradient NMR measurements and rheological viscosity measurements were performed on three series of polymer gel electrolytes. The gels were based on a lithium salt electrolyte swollen into a copolymer matrix comprising an acrylate backbone and ethylene oxide side chains. In each series the side chains differed in length and number, but the acrylate-to-ethylene oxide ratio was kept constant. It was found that the self-diffusion coefficient of the cations was much lower than that of the anions, and that it decreased rapidly when the side chains got longer. In contrast, the self-diffusion coefficient of the anions was found to be independent of chain length. In the gel electrolytes, the diffusion coefficients of the solvent molecules are relatively constant despite an increased viscosity with increasing length of the side chains. However, in salt-free gels made for comparison, the diffusion coefficients of the solvent molecules decreased with increasing length of the side chains, which is consistent with an increased viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b- polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore£ the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b- POEOMA-b- PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focused on the synthesis and self-assembly of novel block copolymers for the purpose of drug delivery. The block copolymers achieved comprise of a synthetic block and a peptide block and self-assemble into nano sized particles which can act as drug containers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical copolymers of indigo (1a) and N-acetylindigo (1b) building blocks with defined structures were studied. They belong to the class of polymeric colorants. The polymers consist of 5,5′-connected indigo units with keto structure and N-acetylindigo units with uncommon tautomeric indoxyl/indolone (=1H-indol-3-ol/3H-indol-3-one) structure (see 2a and 2b in Fig. 1). They formed amorphous salts of elongated monomer lengths as compared to monomeric indigo. The polymers were studied by various spectroscopic and physico-chemical methods in solid state and in solution. As shown by small-angle-neutron scattering (SANS) and transmission-electron microscopy (TEM), disk-like polymeric aggregates were present in concentrated solutions (DMSO and aq. NaOH soln.). Their thickness and radii were determined to be ca. 0.4 and ca. 80 nm, respectively. From the disk volumes and by a Guinier analysis, the molecular masses of the aggregates were calculated, which were in good agreement with each other. Defined structural changes of the polymer chains were observed during several-weeks storage in concentrated DMSO solutions. The original keto structure of the unsubstituted indigo building blocks reverted to the more flexible indoxyl/indolone structure. The new polymers were simultaneously stabilized by intermolecular H-bonds to give aggregates, preferentially dimers. Both aggregation and tautomerization were reversible upon dissolution. The polymers were synthesized by repeated oxidative coupling of 1,1′-diacetyl-3,3′-dihydroxybis-indoles 5 (from 1,1′-diacetyl-3,3′-bis(acetyloxy)bis-indoles 6) followed by gradual hydrolysis of the primarily formed poly(N,N′-diacetylindigos) 7 (Scheme). N,N′-Diacetylbis-anthranilic acids 9 were isolated as by-products.