13 resultados para Acousto-optical devices

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Photochromism is a fascinating phenomenon which has attracted much commercial interest for applications including sunglasses, optical devices such as memories and switches, and security printing. Photochromic textile is an exciting new application due to its implications for fashion and UV protection. This book explores the phenomenon of photochromism, its application in textiles and ways of improving the performance and durability of photochromic fabrics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Designed a multilayer SPR biosensor to improve the detection sensitivity and accuracy simultaneously. Developed a design procedure to identify optimum design parameters for SPR biosensing. Devised a new detection measurement technique based on S-parameters for SPR biosensing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic interactions to stabilize Langmuir films at the air/water interface have been used to develop improved duolayer films. Two-component mixtures of octadecanoic (stearic) acid and poly(diallyldimethylammonium chloride) (polyDADMAC) with different ratios were prepared and applied to the water surface. Surface pressure isotherm cycles demonstrated a significant improvement in film stability with the inclusion of the polymer. Viscoelastic properties were measured using canal viscometry and oscillating barriers, with both methods showing that the optimum ratio for improved properties was four octadecanoic acid molecules to one DADMAC unit (1:0.25). At this ratio it is expected multiple strong ionic interactions are formed along each polymer chain. Brewster angle microscopy showed decreased domain size with increased ratios of polyDADMAC, indicating that the polymer is interspersed across the surface. This new method to stabilize and increase the viscoelastic properties of charged monolayer films, using a premixed composition, will have application in areas such as water evaporation mitigation, optical devices, and foaming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect. It is observed that the stresses cause non-uniform optical anisotropy in the waveguide materials, which is then incorporated in the modal analysis considering a multilayer structure of waveguide. The approach is exploited in the design of a Bragg grating on strip waveguide. Excellent agreement between calculated and published experimental results confirms the feasibility of our approach in the accurate design of polarization insensitive polymer waveguide devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lab-on-a-chips are microfluidic devices which include biological laboratory functions on a single chip. They offer great advantages in terms of speed of analysis, precision, low sample and reagent consumption and automation of analysis. An efficient detection method in lab-on-a-chips is essential for the detection and quantification of chemical and biological parameters under examination. This review paper focuses on the recent research on optical detection techniques for LOC applications. Furthermore, several emerging detection paradigms which are still being matured are covered in this paper. Also, an analysis of the performance of different optical detection methods is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochromic devices change their color and optical properties with applied voltage. A new symmetrical electrochromic configuration was constructed in previous works, where PEDOT acted as electrochromic layer or as counter electrode layer, depending on the polarity of the applied voltage. Devices of around 500mm2 and switching voltages from 0,5V to 2V are used in this work. Measured electrochemical impedance is fitted to an equivalent circuit based on a Randles cell, with Warburg impedance simulating ionic diffusion at low frequencies. Voltage dependence is analyzed for the first time in this kind of devices. Results show homogeneity problems in the contact layers, not seen in normal operation, and the voltage dependence on some construction parameters. This will be used to improve the devices construction, but improvements in the equivalent circuit should also be made. The proposed equivalent circuit is not valid after the redox reaction, from 1.5 to 2V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications of LSPR nano-particles in various areas of solar cells, LSPR biosensors, and SERS biosensors, based on interaction of light with noble metal nano-particles is increasing. Therefore, design and nano-fabrication of the LSPR devices is a key step in developing such applications. Design of nano-structures with desirable spectral properties using numerical techniques such as finite difference time domain (FDTD) is the first step in this work. A new structure called nano-sinusoid, satisfying the some desirable LSPR characteristics, is designed and simulated using the FDTD method. In the next stage, analytical method of electro static eigen mode method is used to validate the simulation results. The, nano-fabrications method of electron beam lithography (EBL) is implemented to fabricate the proposed profile with high precision. Finally, atomic force microscopy (AFM) is used to investigate the shape of the fabricated nano-particles, and the dark field microscopy is employed to demonstrate the particular spectral characteristics of the proposed nano-sinusoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.