37 resultados para Acinonyx jubatus, algae, algal bloom, Bayesian network, BN, Botswana, cheetah, conservation, cheetah relocation, DOOBN, dynamic network, free-ranging cheetah population, integrated network, IBNDC, integrated Bayesian network development cycle

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine diatoms and dinoflagellates play a variety of key ecosystem roles as important primary producers (diatoms and some dinoflagellates) and grazers (some dinoflagellates). Additionally some are harmful algal bloom (HAB) species and there is widespread concern that HAB species may be increasing accompanied by major negative socio-economic impacts, including threats to human health and marine harvesting1, 2. Using 92,263 samples from the Continuous Plankton Recorder survey, we generated a 50-year (1960–2009) time series of diatom and dinoflagellate occurrence in the northeast Atlantic and North Sea. Dinoflagellates, including both HAB taxa (for example, Prorocentrum spp.) and non-HAB taxa (for example, Ceratium furca), have declined in abundance, particularly since 2006. In contrast, diatom abundance has not shown this decline with some common diatoms, including both HAB (for example, Pseudo-nitzschia spp.) and non-HAB (for example, Thalassiosira spp.) taxa, increasing in abundance. Overall these changes have led to a marked increase in the relative abundance of diatoms versus dinoflagellates. Our analyses, including Granger tests to identify criteria of causality, indicate that this switch is driven by an interaction effect of both increasing sea surface temperatures combined with increasingly windy conditions in summer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many temperate estuaries have intermittently open and closed mouths, a feature that is often related to intermittent freshwater input. These systems, often overlooked due to their small size, can have large hydrological variability over medium-term time scales.

This variability presents potential difficulties for estuarine species particularly where anthropogenic alterations to freshwater flows can cause large deviations from natural patterns of tidal influence and inundation of habitat.

Influences of natural and hydrological variability on seagrasses were examined in two central Victorian estuaries with anthropogenically-modified but naturally-intermittent freshwater flows and mouth openings. Comparisons were focused on differences between an estuary with artificially-augmented freshwater inflow and an adjacent system, in which the volume and timing of inflows were altered by a reservoir. Eight additional estuaries in the region were also used to provide a context for these two main sites.

Hydrological changes during the three-year field component were affected by the ending of a drought and then a major flood a year later as well as by ongoing anthropogenic flow reduction and augmentation. These influences on hydrology were associated with an initially high seagrass coverage that was substantially reduced and showed signs of recovery only in the system that was affected by lower inflows. Such influences and responses also changed seasonally but to a much lesser extent than the responses to stochastic climatic events.

Natural flows were intermittent and varied substantially between years. Flooding flows represented up to 89% of the long-term annual average flow. Water quality was broadly typical of the region, with the exception of low pH in some tributaries, especially those of Anglesea estuary. Anthropogenic changes to flow were most evident at times of low natural flows and resulted in longer and more frequent periods of zero inflow to Painkalac estuary and a continual base flow to Anglesea. This base flow, from ponds containing coal ash, neutralised waters flowing from upstream and increased conductivity, except at times of high natural flow.

A three-state conceptual model of the magnitude and variability of water levels, based largely on the degree of tidal influence was identified and quantitatively assessed for the two estuaries that were the main focus of the study. These states in turn had a large influence on the area and inundation of benthic habitat. Floods tended to open the mouths of estuaries, which then remained tidal given sufficient flow to overcome sedimentary processes at the mouths. Low and zero inflow was a precondition for closure of the mouths of the estuaries. When closed, differences in inflow resulted in different endpoints in salinity patterns. From an initial pattern similar to a classic ‘salt wedge’, Painkalac estuary, with reduced inflow, quickly destratified and gradually became more saline, at times hypersaline. Anglesea estuary, with augmented flow, tended to remain stratified for longer until becoming completely fresh, given a long enough period of closure.

Episodic changes in the water quality of the estuaries were associated with different components of the freshwater flow regimes. At high flows, fresh waters of low pH with a high metal load entered Anglesea estuary. Except during the largest flood, when the estuary was completely flushed, this water was neutralised at the halocline and resulting in precipitation of metals. High flows into Painkalac were associated with elevated concentrations of clay-sourced suspended solids. During a closed period, with zero flow, a release of sediment-bound nutrients triggered by anoxia was observed in Painkalac, followed by an algal bloom.

The large decline in seagrass extent that was observed in both estuaries was closely related to floods and the subsequent reductions in potential habitat associated with the tidal states that followed. Analysis of historical patterns of extent against rainfall records suggested that periods of drought and extended mouth closures were related to establishment and expansion of beds. This model was similar to that described for South African estuaries and contrasted with more-seasonal patterns reported for local marine embayments.

Rates of in situ decomposition of seagrass detritus showed a mix of seasonal and disturbance-driven patterns of change, depending on estuary. Variability of these rates on a scale of 100s of metres was typically not significant, but there were a few episodes that were highly significant. A negative correlation between decomposition rate and seagrass extent was also observed. A novel technique for assessing cellulose decomposition potential in sediment, adapted from soil science, proved to be a useful tool for estuarine research. Results from this component of the study highlighted both small-scale variability that was inconsistent through time, and also stable differences in decomposition potential between depths and estuaries that were consistent with differences in hydrological state and salinity.

Given the relative lack of knowledge about processes in intermittent estuaries, particularly those relating to changes in freshwater inflow, results from this study will be of value both locally and for similar systems elsewhere. Locally, it is likely that flow regimes to both Anglesea and Painkalac estuaries will be reduced, following closure of the mine power station at Anglesea and due to increased demand from the reservoir above Painkalac. There is potential to manage flows from each of these sources to minimise downstream effects. Regionally, and globally, there are many intermittent estuaries in areas with Mediterranean-type climates. It has been predicted that the climates of these regions will become drier but with an increase in intensity of storm events, both of which have ramifications for flow regimes to estuaries. It is hoped that results of this study will contribute to more informed management of intermittent estuaries in the context of these likely changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined insitu observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Current drift can have major and potentially negative effects on the lives of weakly swimming species in particular. Fossette etal. show that jellyfish modulate their swimming behavior in relation to current. Such oriented swimming has significant life-history benefits, such as increased bloom formation and a reduction of probability of stranding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the links between external variables such as habitat and interactions with conspecifics and animal space-use is fundamental to developing effective management measures. In the marine realm, automated acoustic tracking has become a widely used method for monitoring the movement of free-ranging animals, yet researchers generally lack robust methods for analysing the resulting spatial-usage data. In this study, acoustic tracking data from male and female broadnose sevengill sharks Notorynchus cepedianus, collected in a system of coastal embayments in southeast Tasmania were analyzed to examine sex-specific differences in the sharks' coastal space-use and test novel methods for the analysis of acoustic telemetry data. Sex-specific space-use of the broadnose sevengill shark from acoustic telemetry data was analysed in two ways: The recently proposed spatial network analysis of between-receiver movements was employed to identify sex-specific space-use patterns. To include the full breadth of temporal information held in the data, movements between receivers were furthermore considered as transitions between states of a Markov chain, with the resulting transition probability matrix allowing the ranking of the relative importance of different parts of the study area. Both spatial network and Markov chain analysis revealed sex-specific preferences of different sites within the study area. The identification of priority areas differed for the methods, due to the fact that in contrast to network analysis, our Markov chain approach preserves the chronological sequence of detections and accounts for both residency periods and movements. In addition to adding to our knowledge of the ecology of a globally distributed apex predator, this study presents a promising new step towards condensing the vast amounts of information collected with acoustic tracking technology into straightforward results which are directly applicable to the management and conservation of any species that meet the assumptions of our model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern times, not many primary industries have consistently recorded high yearly growth over a period of two decades. Aquaculture has sustained a global growth, continues to grow, and is expected to increasingly fill the shortfall in aquatic food products resulting from static or declining capture fisheries and population increase well into the year 2025. Its further growth and development will have to occur under a different socio-economic milieu in the new millennium. The basic paradigm changes will be from an increased production at almost any cost, to a sustainable increase in production with minimal environmental perturbations. Despite such paradigm changes, aquaculture will increasingly contribute to food security, poverty alleviation and social equity. The contribution of aquaculture to world food supply of aquatic products has been increasing over the past 10 years, in comparison to capture fisheries, growing from 15 to 28 percent of total production between 1988 and 1997. As the bulk of aquaculture is rural and subsistence, it plays a major role as a provider of direct and indirect employment to the rural poor and, thereby, to poverty alleviation. In many developing countries, aquaculture provides opportunities for diversification on agriculture farms and productive use to otherwise idle land during certain seasons. The main cause for the upsurge in the sector has been the transformation of aquaculture from an “art” form to a “science”. This brought many advantages, ranging from less dependence on wild stock to the development of techniques that optimized yields, such as polyculture, or enabled the achievement of high yields with low inputs. Two major developments also enabled the sector to maintain growth momentum, appropriate institutional frameworks and concerted research and development. Regions or continents have many commonalities. These include the predominance of finfish among the cultivated species, and the predominance of species that feed lower in the food chain, although shrimp, which does not naturally feed high in the trophic level but is mostly reared on artificial feed, has become a significant culture commodity. Notable differences, however, include the fact that all regions, except Africa and the countries of the former USSR, have recorded a significant increase in per capita production between 1984 and 1997. While Asia continues to dominate world aquaculture in overall tonnage, as well as in every major commodity, South America has registered a very high (72.8 percent) average annual growth between 1984 and 1997. The global and regional trends over the last 20 years in the sector from a number of perspectives, such as production trends, contribution of aquaculture to aquatic food consumption etc., are evaluated. Based on these different trends and in the light of changing socio-economic conditions globally, and in particular, in developing nations, the potential changes in the sector in the new millennium are highlighted. Finally, projections are made for the next 20 years, where opportunities, constraints and strategies for achieving the targets are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functions have yet to be defined for the majority of genes of Plasmodium falciparum, the agent responsible for the most serious form of human malaria. Here we report changes in P. falciparum gene expression induced by 20 compounds that inhibit growth of the schizont stage of the intraerythrocytic development cycle. In contrast with previous studies, which reported only minimal changes in response to chemically induced perturbations of P. falciparum growth, we find that ~59% of its coding genes display over three-fold changes in expression in response to at least one of the chemicals we tested. We use this compendium for guilt-by-association prediction of protein function using an interaction network constructed from gene co-expression, sequence homology, domain-domain and yeast two-hybrid data. The subcellular localizations of 31 of 42 proteins linked with merozoite invasion is consistent with their role in this process, a key target for malaria control. Our network may facilitate identification of novel antimalarial drugs and vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyberspace, the ubiquitous space that exists in relation to the Internet, is usually referred to as a dynamic broad domain ranging from Internet and its infrastructures to social networks. More research work in security has been extended from securing computers to securing Cyberspace, which includes the physical-level security, the network-level security, and the application-level security and addresses improvements in Cyberspace management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has never been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labelled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6-1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R(2) = 0.76) and to a lesser extent while transiting (R(2) = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R(2) = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude × number of strokes) predicted total energy expenditure (R(2) = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper formulates the problem of learning Bayesian network structures from data as determining the structure that best approximates the probability distribution indicated by the data. A new metric, Penalized Mutual Information metric, is proposed, and a evolutionary algorithm is designed to search for the best structure among alternatives. The experimental results show that this approach is reliable and promising.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nodularia spumigena periodically proliferates to cause toxic algal blooms with some aquatic animals enduring and consuming high densities of the blue green algae or toxic lysis. N. spumigena contains toxic compounds such as nodularin and lipopolysaccharides. This current work investigates physiological effects of exposure from bloom conditions of N. spumigena cells and a post-bloom lysis. Biochemical and antioxidative biomarkers were comparatively studied over an acute 3-day exposure. In general, a post-bloom N. spumigena lysis caused opposite physiological responses to bloom densities of N. spumigena. Specifically, increases in glutathione (GSH) and glutathione peroxidase (GPx) and decreases in glutathione S-transferase (GST) were observed from the N. spumigena lysis. In contrast, N. spumigena cell densities decreased GSH and increased GST and lipid peroxidation (LPO) in mussels. Findings also suggest that at different stages of a toxic bloom, exposure may result in toxic stress to specific organs in the mussel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a neural network (NN)-based multi-agent classifier system (MACS) utilising the trust-negotiation-communication (TNC) reasoning model is proposed. A novel trust measurement method, based on the combination of Bayesian belief functions, is incorporated into the TNC model. The Fuzzy Min-Max (FMM) NN is used as learning agents in the MACS, and useful modifications of FMM are proposed so that it can be adopted for trust measurement. Besides, an auctioning procedure, based on the sealed bid method, is applied for the negotiation phase of the TNC model. Two benchmark data sets are used to evaluate the effectiveness of the proposed MACS. The results obtained compare favourably with those from a number of machine learning methods. The applicability of the proposed MACS to two industrial sensor data fusion and classification tasks is also demonstrated, with the implications analysed and discussed.