122 resultados para Abrasion by strength

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to quantify the strength of motor unit synchronization and coherence from pairs of concurrently active motor units before and after short-term (4–8 weeks) strength training of the left first dorsal interosseous (FDI) muscle. Five subjects (age 24.8 ± 4.3 years) performed a training protocol three times/week that consisted of six sets of ten maximal isometric index finger abductions, whereas three subjects (age 27.3 ± 6.7 years) acted as controls. Motor unit activity was recorded from pairs of intramuscular electrodes in the FDI muscle with two separate motor unit recording sessions obtained before and after strength training (trained group) or after 4 weeks of normal daily activities that did not involve training (control group). The training intervention resulted in a 54% (45.2 ± 8.3 to 69.5 ± 13.8 N, P = 0.001) increase in maximal index finger abduction force, whereas there was no change in strength in the control group. A total of 163 motor unit pairs (198 single motor units) were examined in both subject groups, with 52 motor unit pairs obtained from 10 recording sessions before training and 51 motor unit pairs from 10 recording sessions after training. Using the cross-correlation procedure, there was no change in the strength of motor unit synchronization following strength training (common input strength index; 0.71 ± 0.41 to 0.67 ± 0.43 pulses/s). Furthermore, motor unit coherence z scores at low (0–10 Hz; 3.9 ± 0.3 before to 4.4 ± 0.4 after) or high (10–30 Hz; 1.7 ± 0.1 before to 1.9 ± 0.1 after) frequencies were not influenced by strength training. These motor unit data indicate that increases in strength following several weeks of training a hand muscle are not accompanied by changes in motor unit synchronization or coherence, suggesting that these features of correlated motor unit activity are not important in the expression of muscle strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To determine the relationship between lower body strength of community-dwelling older adults and the time to negotiate obstructed gait tasks.

DESIGN: A correlational study.

SETTING: The Biomechanics Laboratory, Deakin University, Australia.

PARTICIPANTS: Twenty-nine women and 16 men aged 62 to 88 were recruited using advertisements placed in local newspapers. The participants were independent community dwellers, healthy and functionally mobile.

MEASUREMENTS: Maximal isometric strength of the knee extensors and dynamic strength of the hip extensors, hip flexors, hip adductors, hip abductors, knee extensors, knee flexors, and ankle plantar flexors were assessed. The times to negotiate four obstructed gait tasks at three progressively challenging levels on an obstacle course and to complete the course were recorded. The relationship between strength and the crossing times was explored using linear regression models.

RESULTS: Significant associations between the seven strength measures and the times to negotiate each gait task and to walk the entire course at each level were obtained (r = -0.38 to -0.55; P < .05). In addition, the percentage of the variance explained by strength (R2), consistently increased as a function of the progressively challenging level. This increase was particularly marked for the stepping over task (R2 = 19.3%,25.0%, and 27.2%, for levels 1, 2, and 3, respectively) and the raised surface condition (R2 = 17.1%,21.1%, and 30.8%, for levels 1,2, and 3, respectively) .

CONCLUSION:
The findings of the study showed that strength is a critical requirement for obstructed locomotion. That the magnitude of the association increased as a function of the challenging levels suggests that intervention programs aimed at improving strength would potentially be effective in helping community-dwelling older adults negotiate environmental gait challenges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Marsupial research, conservation, and management can benefit greatly from knowledge about glucocorticoid (GC) secretion patterns because GCs influence numerous aspects of physiology and play a crucial role in regulating an animal's response to stressors. Faecal glucocorticoid metabolites (FGM) offer a non-invasive tool for tracking changes in GCs over time. To date, there are relatively few validated assays for marsupials compared with other taxa, and those that have been published generally test only one assay. However, different assays can yield very different signals of adrenal activity. The goal of this study was to compare the performance of five different enzyme immunoassays (EIAs) for monitoring adrenocortical activity via FGM in 13 marsupial species. We monitored FGM response to two types of events: biological stressors (e.g., transport, novel environment) and pharmacological stimulation (ACTH injection). For each individual animal and assay, FGM peaks were identified using the iterative baseline approach. Performance of the EIAs for each species was evaluated by determining (1) the percent of individuals with a detectable peak 0.125-4.5days post-event, and (2) the biological sensitivity of the assay as measured by strength of the post-event response relative to baseline variability (Z-score). Assays were defined as successful if they detected a peak in at least 50% of the individuals and the mean species response had a Z⩾2. By this criterion, at least one assay was successful in 10 of the 13 species, but the best-performing assay varied among species, even those species that were closely related. Furthermore, the ability to confidently assess assay performance was influenced by the experimental protocols used. We discuss the implications of our findings for biological validation studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Overuse injury to the patellar tendon (patellar tendinopathy) is a major reason for interrupted training and competition for elite athletes. In both sexes, the prevalence of unilateral and bilateral tendinopathy has been shown to differ. It has been proposed that bilateral pathology may have a different aetiology from unilateral pathology. Investigation of risk factors that may be unique to unilateral and bilateral patellar tendinopathy in female athletes may reveal insights into the aetiology of this condition.
Objectives: To examine whether anthropometry, body composition, or muscle strength distinguished elite female basketball players with unilateral or bilateral patellar tendinopathy.
Methods: Body composition, anthropometry, and muscle strength were compared in elite female basketball players with unilateral (n = 8), bilateral (n = 7), or no (n = 24) patellar tendinopathy. Body composition was analysed using a dual energy x ray absorptiometer. Anthropometric measures were assessed using standard techniques. Knee extensor strength was measured at 180°/s using an isokinetic dynamometer. z scores were calculated for the unilateral and bilateral groups (using the no tendinopathy group as controls). z scores were tested against zero.
Results: The tibia length to stature ratio was approximately 1.3 (1.3) SDs above zero in both the affected and non-affected legs in the unilateral group (p<0.05). The waist to hip ratio was 0.66 (0.78) SD above zero in the unilateral group (p<0.05). In the unilateral group, leg lean to total lean ratio was 0.42 (0.55) SD above zero (p<0.07), the trunk lean to total lean ratio was 0.63 (0.68) SD below zero (p<0.05), and leg fat relative to total fat was 0.47 (0.65) SD below zero (p<0.09). In the unilateral group, the leg with pathology was 0.78 (1.03) SD weaker during eccentric contractions (p<0.07).
Conclusions: Unilateral patellar tendinopathy has identifiable risk factors whereas bilateral patellar tendinopathy may not. This suggests that the aetiology of these conditions may be different. However, interpretation must respect the limitation of small subject numbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of pre-straining and bake-hardening on the mechanical properties of thermomechanically processed 0.2C-1.5Si-1.5Mn-0.2Mo-0.004Nb (wt%) steel was analysed using tensile test, transmission electron microscopy (TEM) and atom probe tomography (APT). This steel after processing had high strength (~1200MPa) and good ductility (~20%) due to the formation of fully bainitic microstructure with nano-layers of bainitic ferrite and retained austenite. The bake hardening (BH) of pre-strained (PS) samples increased the yield strength of steel up to 690MPa and showed the bake-hardening response of 220MPa due to the operation of several strengthening mechanisms such as transformation induced plasticity during pre-straining and pinning the dislocations by carbon during bake-hardening treatment. The carbon content of the bainitic ferrite and retained austenite before and after bake-hardening treatment, the solute distribution between these phases and the local composition of fine Fe-C clusters and particles formed during bake-hardening treatment was calculated using APT. The bainitic ferrite and retained austenite microstructural characteristics such as thickness of the layers and their dislocation density before and after bake-hardening treatment were studied using TEM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective The present study examined associations of several home and neighbourhood environmental variables with fruit consumption and explored whether these associations were mediated by variables derived from the Theory of Planned Behaviour (TPB) and by habit strength.

Design Data of the Dutch GLOBE study on household and neighbourhood environment, fruit intake and related factors were used, obtained by self-administered questionnaires (cross-sectional), face-to-face interviews and audits.

Setting
The city of Eindhoven in the Netherlands

Subjects
Adults (n 333; mean age 58 years, 54 % female).

Results
Multiple mediation analyses were conducted using regression analyses to assess the association between environmental variables and fruit consumption, as well as mediation of these associations by TPB variables and by habit strength. Intention, perceived behaviour control, subjective norm and habit strength were associated with fruit intake. None of the neighbourhood environmental variables was directly or indirectly associated with fruit intake. The home environmental variable ‘modelling behaviour by family members’ was indirectly, but not directly, associated with fruit intake. Habit strength and perceived behaviour control explained most of the mediated effect (71·9 %).

Conclusions
Modelling behaviour by family members was indirectly associated with fruit intake through habit strength and perceived behaviour control. None of the neighbourhood variables was directly or indirectly, through any of the proposed mediators, associated with adult fruit intake. These findings suggest that future interventions promoting fruit intake should address a combination of the home environment (especially modelling behaviour by family members), TPB variables and habit strength for fruit intake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapid Prototyping Techniques (RPT) have evolved over the last decade. Novel RP techniques are being developed to improve the overall properties of parts manufactured using RPT. One such technique is the Curved layer fused deposition modeling (CLFDM) which has been developed based on the conventional Fused Deposition Modeling (FDM) technique. The CLFDM technique has gained significant amount of attention as a result of its advantages such as increased flexural strength, reduction of the stair-stepping effect and the reduction in the number of layers, especially for thin shell-like structures. This paper studies the effects of fill gap (FG) on flexural strength and bead dimension, middle-plane cross section profiles and the fracture surface and compares the results to parts made using the traditional planar layer-by-layer approach. Also, in the end some meaningful and interesting future study areas both in hardware design and software development for the CLFDM are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) techniques such as ECAP (equal channel angular pressing), bimodal grain size distributions have been observed under different circumstances, for example shortly after ECAP, after rest or anneal and/or after mild cyclic deformation at rather low homologous temperature. It has been shown that the mechanical monotonic and fatigue properties of some UFG materials can be modified (sometimes enhanced) by introducing a bimodal grain size distribution by a mild annealing treatment which leads, in some cases, to a good combination of strength and ductility. Here, the conditions under which bimodal grain size distributions evolve by (adiabatic) heating during ECAP and during subsequent annealing or cyclic deformation will be explored, and the effects on the mechanical properties, as studied by the authors and as reported so far in the literature, will be reviewed and discussed. In particular, the role of temperature rise during ECAP will be considered in some detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultra-high strength steel sheets have been subjected to heat treatments that simulate the thermal cycles in hot-dip galvanising and galvannealing processes and evaluated with respect to their resulting mechanical properties and microstructures. The steels contained suitable contents of carbon (∼0.2%), manganese (1.2%) and chromium (0.4%) to ensure that they could be fully transformed to martensite after austenitisation followed by rapid cooling in a continuous annealing line, prior to galvanising. Different contents of vanadium (0–0.1%) and nitrogen (0.002–0.012%) were used to investigate the possible role of these microalloying elements on the strength of the tempered martensite. Vanadium, especially when in combination with a raised nitrogen content, helps to resist the effect of tempering so that a larger proportion of the initial strengthening is preserved after the galvanising cycle, giving tensile strength levels exceeding 1000 MPa. Different deoxidation practices using aluminium or silicon have also been included. These showed similar strength levels at corresponding carbon contents but the bendability of the Si-killed steel sheet was considerably superior. Microstructural examinations have been made on the annealed steels but the reason for the beneficial effect of vanadium is still not fully explained. It is concluded that microalloying with vanadium is a very promising approach in the development of corrosion-resistant ultra-high strength steel sheet products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394 motor-unit pairs in 13 subjects using data from a previous study in which differences were found in the strength of motor-unit synchronization depending on training status. In the present study, we found that the strength of motor-unit coherence was significantly greater in the left compared with the right hand of untrained right-handed subjects with the largest differences observed between 21 and 24 Hz. The strength of motor-unit coherence was lower in both hands of skill-trained subjects (21–27 Hz) and the right (skilled) hand of untrained subjects (21–24 Hz), whereas the largest motor-unit coherence was observed in both hands of strength-trained subjects (3–9 and 21–27 Hz). A strong curvilinear association was observed between motor-unit synchronization and the integral of coherence at 10–30 Hz in all motor-unit pairs (r2 = 0.77), and was most pronounced in strength-trained subjects (r2 = 0.90). Furthermore, this association was accentuated when using synchronization data with broad peaks (>11 ms), suggesting that the 10- to 30-Hz coherence is due to oscillatory activity in indirect branched common inputs. The altered coherence with training may be due to an interaction between cortical inhibition and the number of direct common inputs to motor neurons in skill- or strength-trained hands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges in assessing the mechanical properties of recovery annealed steel is the strain localization that occurs almost immediately on the formation of the first Lüders band, such that no or limited propagation of the Lüders band occurs along the tensile coupon. The stress raiser associated with the geometry of the standard tensile coupon means that this plastic deformation is often completely outside the standard extensometers on the coupon. Hence, no strain is measured during the test. While this is not important for assessing the tensile strength of the steel, it does mean that the strain related properties, such as the elastic limit of the steel, cannot be measured using standard testing techniques.This work addresses this issue by examining three techniques for ensuring that the strain occurs inside the extensometer. It is shown that the best technique is the extended extensometer, where the gauge length covers slightly more than the tensile coupon parallel length. While this leads to some variation in the width of the material being measured, compensation can be be made by adjusting the strain to correct the Young's Modulus.This technique has direct implications not just for recovery annealed steels, but for other high strength, low work hardening materials such as ultrafine ferrite. A particular requirement of these high strength steels in structural applications is a high elastic limit; hence, measurement of the strain related properties for these high strength materials must be considered vital in their mechanical assessment.