9 resultados para AZOBENZENE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembling behavior of a single-chain quaternary ammonium amphiphile bearing azobenzene (C12AzoC6N+) on freshly cleaved mica sheet has been investigated by atomic force microscopy (AFM) method. Confocal microscopic Raman spectra confirm the adsorption of the self-assembled monolayer structure. Ex-situ AFM reveals that C12AzoC6N+ forms branch-like stripes indicating the fusion and reorganization of the micelles during drying in air as the in-situ AFM has revealed that surfactant forms spherical micelles on the mica surface. The nano-sized surface structure is strongly dependent on the change of molecular structure, which resulted from photo-induced isomerization. The nano-sized stripe is quite stable even being annealed at 90 °C for 4 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of varying the position of the azobenzene group within two comparable photoresponsive amphiphiles on their capability to form lyotropic liquid crystals (LLCs) was investigated in detail in this study. Two photoresponsive amphiphiles having comparable structures were designed and synthesized consisting of hydrophilic oligooxyethylene units, a hydrophobic alkyl chain and a light-sensitive azobenzene moiety. When the azobenzene group was located in the middle of the hydrophobic alkyl chain, multiple LLC phases were observed at various water contents in the azo-surfactant–water binary system. In contrast, when the azobenzene group was directly attached to the hydrophilic domain, the azo-surfactant–water binary system exhibited only lamellar phases. The temperature dependence of these self-organised nanostructures was also investigated by the combination of small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and rheology. Under alternating UV and visible light irradiation, reversible trans–cis photoisomerization of the azobenzene group occurred efficiently in dilute solution for both azo-surfactants. However, only photoisomerization of the surfactant possessing the azobenzene group localized in the middle of the alkyl chain induced significant changes in the self-assembled structure and its bulk properties. This study demonstrates that self-assembly and photoresponsive behaviour of photosensitive amphiphiles is extremely sensitive to the position of the photoactive moiety within the surfactant molecular architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the preparation of wavelike surface patterns with characteristic wavelengths on thin bilayers of poly(methyl methacrylate) on azobenzene liquid crystalline polymer films (LCP/PMMA) by irradiation of a single polarized pulsed laser beam. The formation of such patterns was influenced by the thickness of the upper layer and the laser fluence. We were also able to guide the wavelike pattern to have a specific orientation by placing an elastic polydimethylsiloxane (PDMS) mold on the surface of bilayer film prior to laser irradiation. Moreover, the property of the laser irradiation, that is, the selectivity through mask-projection systems, allowed us fabricating complicated micropattems for novel microdevices. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submicrometer-scale periodic structures consisting of parallel grooves were prepared on azobenzene-containing multiarm star polymer films by laser interference. The wetting characteristics on the patterned surfaces were studied by contact angle measurements. Macroscopic distortion of water drops was found on such small-scale surface structures, and the contact angles measured from the direction parallel to the grooves were larger than those measured from the perpendicular direction. A thermodynamic model was developed to calculate the change in the surface free energy as a function of the instantaneous contact angle when the three-phase contact line (TPCL) moves along the two orthogonal directions. It was found that the fluctuations, i.e., energy barriers, on the energy versus contact angle curves are crucial to the analysis of wetting anisotropy and contact angle hysteresis. The calculated advancing and receding contact angles from the energy versus contact angle curves were in good agreement with those measured experimentally. Furthermore, with the groove depth increasing, both the degree of wetting anisotropy and the contact angle hysteresis perpendicular to the grooves increased as a result of the increase in the energy barrier. The theoretical critical value of the groove depth, above which the anisotropic wetting appears, was determined to be 16 nm for the grooved surface with a wavelength of 396 nm. On the other hand, the effect of the groove wavelength on the contact angle hysteresis perpendicular to the grooves was also interpreted on the basis of the thermodynamic model. That is, with the wavelength decreasing, the contact angle hysteresis increased due to the increase in the number of energy barriers. These results may provide theoretical evidence for the design and application of anisotropic wetting surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe novel lyotropic liquid-crystalline (LLC) materials based on photoresponsive amphiphiles that exhibit rapid photoswitchable rheological properties of unprecedented magnitude between solidlike and liquidlike states. This was achieved through the synthesis of a novel azobenzene-containing surfactant (azo-surfactant) that actuates the transition between different LLC forms depending on illumination conditions. Initially, the azo-surfactant/water mixtures formed highly ordered and viscous LLC phases at 20-55 wt % water content. Spectroscopic, microscopic, and rheological analysis confirmed that UV irradiation induced the trans to cis isomerization of the azo-surfactant, leading to the disruption of the ordered LLC phases and a dramatic, rapid decrease in the viscosity and modulus resulting in a 3 orders of magnitude change from a solid (20,000 Pa) to a liquid (50 Pa) at rate of 13,500 Pa/s. Subsequent exposure to visible light reverses the transition, returning the viscosity essentially to its initial state. Such large, rapid, and reversible changes in rheological properties within this LLC system may open a door to new applications for photorheological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-photon initiated photo-isomerization of an azobenzene moiety adsorbed on silver nanoparticles (Ag NPs) is demonstrated. The azobenzene is linked to a materials-binding peptide that brings it into intimate contact with the Ag NP surface, producing a dramatic enhancement of its two-photon absorbance. An integrated modeling approach, combining advanced conformational sampling with Quantum Mechanics/Capacitance Molecular Mechanics and response theory, shows that charge transfer and image charges in the Ag NP generate local fields that enhance two-photon absorption of the cis isomer, but not the trans isomer, of adsorbed molecules. Moreover, dramatic local field enhancement is expected near the localized surface plasmon resonance (LSPR) wavelength, and the LSPR band of the Ag NPs overlaps the azobenzene absorbance that triggers cis to trans switching. As a result, the Ag NPs enable two-photon initiated cis to trans isomerization, but not trans to cis isomerization. Confocal anti-Stokes fluorescence imaging shows that this effect is not due to local heating, while the quadratic dependence of switching rate on laser intensity is consistent with a two-photon process. Highly localized two-photon initiated switching could allow local manipulation near the focal point of a laser within a 3D nanoparticle assembly, which cannot be achieved using linear optical processes.