41 resultados para ANTI-PROLIFERATIVE ACTIVITY

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broad antifungal structure-activity relationships governing epoxy-endoperoxides 2 and 3 and their parent endoperoxides 1 are reported. Their inhibitory activity against Candida albicans in conjunction with hemolytic activity and/or growth inhibition of cultured mammalian cells are reported. This information provided guidance for the further development of endoperoxide and epoxy-endoperoxides as topical antifungal agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an ongoing effort to rationally design new antimicrobials, 47 new 1,2-dioxines have been synthesised. Broad antifungal structure-activity relationships governing aromatically substituted epoxy-1,2-dioxines 2 and 3 and their parent 1,2-dioxines 1 were assessed primarily against the pathogenic yeast, Candida albicans, with haemolytic activity of selected examples also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anti-inflammatory effect of a lipid extract from hard-shelled mussel (HMLE) on dextran sulphate sodium (DSS)-induced colitis in mice was investigated. Salicylazosulphapyridine (SASP) and different doses of HMLE were administered by gastric gavage. HMLE significantly attenuated DSS-induced colitis disease activity index scores, tissue damage, splenic enlargement and colon myeloperoxidase accumulation. In addition, HMLE improved colon oxidative stress and production and expression of anti-inflammatory cytokine, interleukin (IL)-10, while HMLE inhibited the abnormal productions and mRNA expressions of pro-inflammatory cytokines, namely tumour necrosis factor-α, IL-1β, and IL-6, as well as the expression of key molecules in the toll-like receptor (TLR)-4/nuclear factor (NF)-κB signalling pathway. These findings suggest that HMLE has an anti-inflammatory effect on DSS-induced colitis, equivalent to that of SASP, and this effect might be related to the regulation of inflammatory mediators and key molecules in the TLR-4/NF-κB pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oleocanthal is an olive oil phenolic possessing anti-inflammatory activity. Anecdotal evidence suggests that oleocanthal elicits a stinging sensation felt only at the back of the throat (oropharynx). Due to this compound possessing potentially health-benefiting properties, investigation into the sensory aspects of oleocanthal is warranted to aid in future research. The important link between the perceptual aspects of oleocanthal and health benefits is the notion that variation in sensitivity to oleocanthal irritation may relate to potential differences in sensitivity to the pharmacologic action of this compound. The current study assessed the unique irritant attributes of oleocanthal including its location of irritation, temporal profile, and individual differences in the perceived irritation. We show that the irritation elicited by oleocanthal was localized to the oropharynx (P < 0.001) with little or no irritation in the anterior oral cavity. Peak irritation was perceived 15 s postexposure and lasted over 180 s. Oleocanthal irritation was more variable among individuals compared with the irritation elicited by CO2 and the sweetness of sucrose. There was no correlation between intensity ratings of oleocanthal and CO2 and oleocanthal and sucrose (r = –0.15, n = 50, P = 0.92 and r = 0.17, n = 84, P = 0.12, respectively), suggesting that independent mechanisms underlie the irritation of CO2 and oleocanthal. The unusual spatial localization and independence of acid (CO2) sensations suggest that distinct nociceptors for oleocanthal are located in the oropharyngeal region of the oral cavity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated the use of low-dose metronomic (LDM) chemotherapy with paclitaxel in a highly metastatic mouse model of 4T1 breast cancers, and compared it with the maximum tolerable dose (MTD) therapy. LDM therapy displayed a stronger anti-tumor activity in suppressing primary and metastatic breast tumors with less degree of side effects, and stronger anti-angiogenic and anti-lymphangiogenic activities than MTD therapy. But MTD therapy showed stronger pro-apoptotic and anti-proliferative activities in situ. Paclitaxel therapy downregulated expression of vascular endothelial growth factor receptor-2 (VEGFR2) and up-regulated expression of thrombospondin-1. The results support the application of paclitaxel LDM therapy to treat advanced breast cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Matrine, one of the main components extracted from a traditional Chinese herb, Sophora flavescens Ait, has displayed anti-cancer activity in several types of cancer cells. This study aims to evaluate the therapeutic benefits of matrine on primary and metastatic breast cancer. Matrine inhibited the viability of and induced apoptosis in human MCF-7 and mouse 4T1 breast cancer cells in a dose-dependent manner in vitro as shown by MTT assay, flow cytometry and laser scanning confocal microscopy. Administration of matrine inhibited the growth of primary tumors and their metastases to lungs and livers, in a dose-dependent manner, in a highly metastatic model of 4T1 breast cancer established in syngeneic Balb/c mice. Tumors from matrine-treated mice had a smaller proliferation index, shown by immunostaining with an anti-Ki-67 antibody, a greater apoptosis index, shown by TUNEL-staining, and a less microvessel density, shown by immunostaining with an anti-CD31 A antibody, compared to the controls. Western blot analysis of tumoral homogenates indicated that matrine therapy reduced the ratio of Bcl-2/Bax, downregulated the expressions of VEGF and VEGFR-2, and increased the activation of caspase-3 and caspase-9. This study suggests matrine may be a potent agent, from a natural resource, for treating metastatic breast cancer because of its anti-apoptotic, anti-proliferative and anti-angiogenic activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, a series of fibrous membranes made from cellulose acetate (CA) and polyester urethane (PEU) by co-electrospining or blend-electrospining were evaluated for drug release kinetics, in vitro anti-microbial activity and in vivo would healing performance when used as wound dressings. To stop common clinical infections, an antibacterial agent, Polyhexamethylene Biguanide (PHMB) was incorporated into e-spun fibres. The presence of CA in the wound healing membrane was found to improve hydrophilicity and permeability to air and moisture. The in vivo tests indicated that the addition of PHMB and CA considerably improved the wound healing efficiency. CA fibres became slightly swollen upon contacting with the wound exudates. It can not only speed up the liquid evaporation but also create a moisture environment for wound recovery. The drug release dynamics of membranes was controlled by the structure of membranes and component rations within membranes. The lower ration of CA:PEU retained the sound mechanical properties of membranes, and also reduced the boost release effectively and slowed down diffusion of antibacterial agent during in vitro tests. The controlled-diffusion membranes exert long-term anti-infective effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A group of α-lipoic acid N-phenylamides were synthesized employing a variety of amide coupling protocols utilizing electron deficient anilines. These compounds were then assessed for their ability to block androgen-stimulated proliferation of a human prostate cancer cell line, LNCaP. These structurally simple compounds displayed anti-proliferative activities at, typically, 5–20 μM concentrations and were comparable to a commonly used anti-androgen Bicalutamide®. The inclusion of a disulfide (RS-SR) moiety, serving as an anchor to several metal nanoparticle systems (Au, Ag, Fe2O3, etc.), does not impede any biological activity. Conjugation of these compounds to a gold nanoparticle surface resulted in a high degree of cellular toxicity, attributed to the absence of a biocompatible group such as PEG within the organic scaffold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim

This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan-calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis.

Materials & methods:
Chondrocytes exposed to IL-1beta and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induce arthritis.

Results:
C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1beta-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan-calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines.

Conclusion:
The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.