6 resultados para ANIMAL CELLS

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current study, the relative contribution of cell-surface components (CSC) and cell-free supernatants (CFS) in the immuno-modulatory properties of 17 strains of probiotic and lactic acid bacteria (LAB) was assessed. The production of pro- and antiinflammatory cytokines including IL-2, IL-4, IL-10, IL-12 p70, IFN-γ, tumor necrosis factor-α (TNF-α), and transforming growth factor-β was measured at different time points after stimulation of buffy coat derived-peripheral blood mononuclear cells (PBMC) from healthy donors with CSC and CFS of probiotic and LAB. Results showed that CSC of probiotic and LAB strains induced production of T helper 1 and 2 type cytokines. Transforming growth factor-β was stimulated at highest concentrations, followed by IL-10 and TNF-α. The CFS of all tested bacterial strains induced PBMC for significantly high levels of IL-10 secretion compared with unstimulated cells, but the values were less than lipopolysaccharide-stimulated cells. Cytokines due to CFS stimulation showed declined concentration for IL-2, TNF-α, and IL-4, and complete disappearance of IL-12, IFN-γ, and transforming growth factor-β in the cultured medium at 96 h of incubation. Results of cytokine data demonstrate proinflammatory TNF-α immune responses are mainly directed through cell-surface structures of probiotic and LAB, but antiinflammatory immune responses are mediated both by metabolites and cell-surfaces of these bacteria. The induction of CD4(+)CD25(+) regulatory T cells after stimulation of PBMC with CSC and CFS of probiotic and LAB showed regulatory T cell activity appeared to be influenced both by the CSC and metabolites, but was principally triggered by cell surfaces of probiotic and LAB strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preclinical research in optogeneticneuromodulation in small laboratory animals allows far greater control of neural circuitry. This precision provides an enhanced opportunity for understanding the neural basis of behavior. However, behavioral neuroscience research is limited by conventional benchtop optogenetic systems. By necessity, the animal is tethered to the light source external to the testing environment. Portable optogeneticmicrodevices enhance the potential for valid behavioral testing in naturalistic conditions by eliminating tethering and enabling free and unrestricted movement. This paper reviews recent advances in the development of portable optogeneticmicrodevices supported by wireless power transfer. Light sources and fiber coupling are common problems in optogenetic systems and are addressed. Device designs and parameters are summarized, along with advances in component technology for energy storage and distribution that make these devices possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aptamers are chimerized with drug or antisense oligos or nanoparticles to generate targeted therapeutics for cancer. Aptamer chimerized siRNA rescues nonspecific delivery and, thereby, enhances the availability of siRNA to target cells. EpCAM RNA aptamer (EpApt or Ep) has potential for siRNA chimerization due to its secondary structure. Stathmin and survivin proteins are reported to aid oncogenicity in retinoblastoma (RB), breast cancer and other cancers. Thus, chimerization of EpCAM Apt with siRNA against survivin and stathmin, respectively, was performed by incorporating Locked Nucleic Acid (LNA) modification. The LNA-modified chimeric aptamers were stable until 96 h and got internalized into RB, WERI-Rb1 and breast cancer, MDAMB453 cell lines. The constructs were studied using the recombinant dicer enzyme for the siRNA generation. Quantitative polymerase chain reaction and immunofluorescence by microscopic analysis of chimeras in vitro exhibited silencing of stathmin and survivin in the RB and breast cancer model. The chimeric constructs showed significant inhibition of cell proliferation of breast cancer cells. Thus, LNA-modified aptamer-based siRNA delivery aids in cell targeting and necessitates further studies in animal models.