32 resultados para ALGINATE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data was obtained from an experiment, where polycarbonate (PC) membranes were used to filter two types of organic foulants, including protein and sodium alginate, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM). This data collection contains 105 2D images of polycarbonate (PC) membranes fouling layer. This data collection would be useful to investigate membrane fouling mechanism by membrane materials researchers and water researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data collection contains 110 images of polycarbonate (PC) membranes fouling layer where three types of organic foulants including yeast, protein and sodium alginate present.

This data collection would be useful to investigate membrane fouling mechanism by membrane materials researchers and water researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of polycarbonate (PC) membrane fouled by two types of organic foulants, protein and sodium alginate. In this experiement, polycarbonate (PC) membrane was used to filter those organic foulants from suspensions in a dead-end stirred cell. The organic foulants were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. It contains image data of polycarbonate (PC) membranes' fouling layer when two types of organic foulants (protein and sodium alginate) are present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. This data collection would be useful to researchers evaluating the backwashing efficiency of PC membrane in order to optimize frequency and operational conditions of backwashing by membrane materials researchers and by water..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of poly(vinylidene fluoride) (PVDF) membrane fouled by yeast and sodium alginate. In this experiement, poly(vinylidene fluoride) (PVDF) membrane was used to filter two types of organic foulants from suspensions in a dead-end stirred cell. The organic foulants including yeast and sodium alginate were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PVDF membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. The data collection contains image data of poly(vinylidene fluoride) (PVDF) membranes' fouling layer when two types of organic foulants (yeast and sodium alginate) are present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. The collection would be useful to researchers evaluating the backwashing efficiency of poly(vinylidene fluoride) (PVDF) membrane in order to optimize frequency and operational conditions of backwashing by membrane materials and by water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of polycarbonate (PC) membrane fouled by three types of organic foulants, protein, sodium alginate and yeast. In this experiement, polycarbonate (PC) membrane was used to filter those organic foulants from suspensions in a dead-end stirred cell. The organic foulants were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. It contains image data of polycarbonate (PC) membranes' fouling layer when three types of organic foulants (protein, sodium alginate and yeast) are present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. This data collection would be useful to researchers who are evaluating the backwashing efficiency of PC membrane in order to optimize frequency and operational conditions of backwashing by membrane materials and by water..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This sub-collection is the result of an investigation into the mechanism of organic fouling in membrane filtration processes. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter two types of organic foulants, protein and sodium alginate with a concentration of 50mg/l and 40 mg/l, respectively, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. This dataset contains a stack of images of the fouling layer on the PVDF membrane surface captured by a confocal laser scanning microscope (CLSM) and its associated acquisition software. This dataset would be useful to researchers who are investigating the membrane organic fouling mechanism so that new membrane materials and new anti-fouling surface treatment technologies can be developed for water and wastewater industry in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This collection is the result of an investigation into the backwashing efficiency of polycarbonate (PC) membrane fouled by two types of organic foulants, sodium alginate and yeast. In this experiement, polycarbonate (PC) membrane was used to filter those organic foulants from suspensions in a dead-end stirred cell. The organic foulants were stained with fluorescent dyes before filtration. After filtration, the PC membrane was backwashed. Consequently, a stack of images were captured from the fouling layers on the PC membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software. It contains image data of polycarbonate (PC) membranes' fouling layer when two types of organic foulants (sodium alginate and yeast) present. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed. This data collection would be useful to researchers evaluating the backwashing efficiency of PC membrane in order to optimize frequency and operational conditions of backwashing by membrane materials and by water..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This sub-collection is the result of an investigation into the mechanism of organic fouling in membrane filtration processes. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter three types of organic foulants, yeast, protein and sodium alginate with a concentration of 50mg/l, 40mg/l and 20 mg/l, respectively, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. This dataset contains a stack of images of the fouling layer on the PVDF membrane surface captured by a confocal laser scanning microscope (CLSM) and its associated acquisition software. This dataset would be useful to researchers who are investigating the membrane organic fouling mechanism so that new membrane materials and new anti-fouling surface treatment technologies can be developed for water and wastewater industry in the future .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To develop polymeric-ceramic nanocarriers (NCs) in order to achieve oral delivery of the anticancer neutraceutical iron-saturated bovine lactoferrin (Fe-bLf) protein.

Materials & methods: Fe-bLf or paclitaxel (Taxol®) were adsorbed onto calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate. The Fe-bLf or Taxol-loaded NCs indicated as AEC–CP–Fe-bLf or AEC–CP–Taxol NCs, respectively, were made by combination of ionic gelation and nanoprecipitation. Size distribution, morphology, internalization and release profiles of the NCs were studied along with evaluation of in vitro and in vivo anticancer activities and compared with paclitaxel.

Results: AEC–CP–Fe-bLf NCs obtained spherical morphology and showed enhanced endocytosis, transcytosis and anticancer activity in Caco-2 cells in vitro. AEC–CP–Fe-bLf NCs were supplemented in an AIN 93G diet and fed to mice in both prevention and treatment human xenograft colon cancer models. AEC–CP–Fe-bLf NCs were found to be highly significantly effective when given orally, as a pretreatment, 1 week before Caco-2 cell injections. None of the mice from the AEC–CP–Fe-bLf NC-fed group developed tumors or showed any signs of toxicity, while the mice fed the control AIN 93G diet showed normal tumor growth. Fe-bLf or Taxol, when given orally in a diet as nanoformulations post-tumor development, showed a significant regression in the tumor size with complete inhibition of tumor growth later, while intratumoral injection of Taxol just delayed the growth of tumors. The pharmacokinetic and bioavailability studies indicated that nanoformulated Fe-bLf was predominantly present on tumor cells compared to non-nanoformulated Fe-bLf. Fe-bLf-loaded NCs were found to help in absorption of iron and thus may have utility in enhancing the iron uptake during iron deficiency without interfering with the absorption of calcium.

Conclusion: With the promising results of our study, the future potential of NC-loaded Fe-bLf in chemoprevention and in the treatment of human colon cancer, deserves further investigation for translational research and preclinical studies of other malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim

This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan-calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis.

Materials & methods:
Chondrocytes exposed to IL-1beta and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induce arthritis.

Results:
C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1beta-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan-calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines.

Conclusion:
The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two experiments were conducted to assess the water stability of a practical research diet manufactured with various binders and differing levels of moisture. In the first experiment the binders – agar, gelatine, carrageenan, and carboxymethylcellulose (CMC) were included at both 3 and 5% of total ingredient weight. All binders were tested with equal ingredient weight to water volume, and additionally carrageenan was tested in a diet with double the water volume. The dry matter remaining following immersion for up to 180 min was calculated and the rate of pellet decay was modelled using the Weibull distribution. The analysis revealed that the rate of dry matter loss decreased with time, and that carrageenan and CMC binders were significantly better (P < 0.001) binders than the agar and gelatine. The 5% binder concentration slowed the decay rate by as much as 62% as compared with the 3% binder concentration. The second experiment compared the binding performance of carrageenan and sodium alginate in both 50% moisture and 10% moisture pellets. The same analysis revealed that 10% moisture alginate-bound pellets were more water stable than the others. A discussion of the use of moist diets for crayfish research is included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 × 1010 g–1 was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in "natural" (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

α-l-Rhamnosidase (EC 3.2.1.40) is an enzyme that catalyzes the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. In this study, a His-tag was genetically attached to the rhamnosidase gene ramA from Clostridium stercorarium to facilitate its purification from Escherichia coli BL21 (DE3) cells containing the pET-21d/ramA plasmid. Immobilized metal-chelate affinity chromatography (IMAC) resulted in one-step purification of N-terminally His-tagged recombinant rhamnosidase (N-His-CsRamA) which was immobilized in Ca2+ alginate (3%) beads. The optimum pH levels of the free and immobilized recombinant rhamnosidase were found to be 6.0 and 7.5, and the optimum temperature 55 and 60 °C respectively. At 50 °C, the free enzyme was relatively stable and exhibited a less than 50% reduction in residual activity after 180 min of incubation. The free and immobilized enzymes achieved 76% and 67% hydrolysis of the naringin in Kinnow juice respectively. Immobilization of recombinant rhamnosidase enabled its reutilization up to 9 hydrolysis batches without an appreciable loss in activity. This result indicated that the His-tagged thermostable rhamnosidase could be prepared as described and may serve to illustrate an economical and commercially viable process for industrial application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral administration of bio–macromolecules is an uphill task and the challenges from varying pH and enzymatic activity are difficult to overcome. In this regard, nanotechnology promises the new hope and offers advantages such as controlled release, target specific delivery, combinatorial therapy and many more. In this study, we demonstrate the formulation of a novel alginate enclosed, chitosan coated ceramic, anti cancer nano carrier (ACSC NC). These NC were loaded with multi functional anti cancer bovine lactoferrin (Lf), a natural milk based protein, for improvement of intestinal absorption, in order to develop a novel platform to carry anti cancer protein and/or peptides for oral therapy. Here we demonstrate the size, morphology, internalisation and release profiles of the nanoparticles (NC) under varying pH as perceived in human digestive system. We further determine the uptake of these particles by colon cancer cell lines by measuring the endocytosis and transcytosis of the NC. These NC can be used for future targeted protein/peptide or nucleic acid based drug delivery to treat difficult diseases including cancer.