32 resultados para ALA

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review examines the data pertaining to an important and often underrated EFA, α-linolenic acid (ALA). It examines its sources, metabolism, and biological effects in various population studies, in vitro, animal, and human intervention studies. The main role of ALA was assumed to be as a precursor to the longer-chain n-3 PUFA, EPA and DHA, and particularly for supplying DHA for neural tissue. This paper reveals that the major metabolic route of ALA metabolism is β-oxidation. Furthermore, ALA accumulates in specific sites in the body of mammals (carcass, adipose, and skin), and only a small proportion of the fed ALA is converted to DHA. There is some evidence that ALA may be involved with skin and fur function. There is continuing debate regarding whether ALA has actions of its own in relation to the cardiovascular system and neural function. Cardiovascular disease and cancer are two of the major burdens of disease in the 21st century, and emerging evidence suggests that diets containing ALA are associated with reductions in total deaths and sudden cardiac death. There may be aspects of the action and, more importantly, the metabolism of ALA that need to be elucidated, and these will help us understand the biological effects of this compound better. Additionally, we must not forget that ALA is part of the whole diet and should be seen in this context, not in isolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rate-limiting step in docosahexaenoic acid (DHA) formation from α-linolenic acid (ALA) involves peroxisomal oxidation of 24:6n-3 to DHA. The aim of the study was to determine whether conjugated linoleic acid (CLA) would enhance conversion of ALA to DHA in humans on an ALA-supplemented diet. The subjects (n=8 per group) received daily supplementation of ALA (11g) and either CLA (3.2g) or placebo for 8 weeks. At baseline, 4 and 8 weeks, blood was collected for plasma fatty acid analysis and a number of physiological measures were examined. The ALA-supplemented diet increased plasma levels of ALA and eicosapentaenoic acid (EPA). The addition of CLA to the ALA diet resulted in increased plasma levels of CLA, as well as ALA and EPA. Plasma level of DHA was not increased with either the ALA alone or ALA plus CLA supplementation. The results demonstrated that CLA was not effective in enhancing DHA levels in plasma in healthy volunteers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Failure to provide omega 3 fatty acids in the perinatal period results in alterations in nerve growth factor levels, dopamine production and  permanent elevations in blood pressure. The present study investigated whether changes in brain (i.e., hypothalamus) glycerophospholipid fatty acid profiles induced by a diet rich in omega 6 fatty acids and very low in alpha-linolenic acid (ALA) during pregnancy and the perinatal period could be reversed by subsequent feeding of a diet containing ALA. Female rats (6 per group) were mated and fed either a low ALA diet or a control diet containing ALA throughout pregnancy and until weaning of the pups at 3 weeks. At weaning, the pups (20 per group) remained on the diet of their mothers until 9 weeks, when half the pups were switched onto the other diet, thus generating four groups of animals. At 33 weeks, pups were killed, the hypothalamus dissected from the male rats and analysed for glycerophospholipid fatty acids. In the animals fed the diet with very little ALA and then re-fed the control diet containing high levels of ALA for 24 weeks, the DHA levels were still significantly less than the control values in PE, PS and PI fractions, by 9%, 18% and 34%, respectively. In this group, but not in the other dietary groups, ALA was detected in all glycerophospholipid classes at 0.2–1.7% of the total fatty acids. The results suggest that omega 6–3 PUFA imbalance early in life leads to irreversible changes in hypothalamic composition. The increased ALA and reduced DHA proportions in the animals re-fed ALA in later life are consistent with a dysfunction or down-regulation of the conversion of ALA to 18:4n-3 by the delta-6 desaturase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A protein isolate from white lupin (Lupinus albus; L-ISO) has potential as a novel human food ingredient, but its nutritional effects are unknown.

Methods
: We evaluated protein quality and effects on body composition in rats of isoenergic diets of L-ISO, lactalbumin, or casein with both restricted (10-day) and ad libitum (28-day)intake. The diets were equivalent in protein per se, but supplementation was used to balance essential amino acid levels.

Results: In both studies, the rats consumed similar amounts of each diet, and no effect of diet on the gain:feed ratio was observed--though gain:N ratio and net protein utilization were slightly lower for the L-ISO diet. Lower large intestinal weights after the L-ISO than after the lactalbumin diet were observed in both studies. The L-ISO diet resulted in lowered body fat percentage in the 10-day study but in an elevated level in the 28-day study. Liver composition (DNA, RNA, glycogen, and fat) and plasma levels of some amino acids (His, Thr, Ala, Pro, Tyr, Val and Met) were affected by diet, but no effects on plasma lipid, glucose, or uric acid were observed.

Conclusion
: The L-ISO diet did not affect feed intake and has adequate nutritional quality in rats whilst modifying large intestinal weight in a potentially beneficial manner--suggesting potential for this protein in human nutrition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the intracellular distribution and internalization kinetics of the granulocyte colony-stimulating factor receptor (G-CSF-R) in living cells using fusion constructs of wild-type or mutant G-CSF-R and enhanced green fluorescent protein (EGFP). Under steady-state conditions the G-CSF-R localized predominantly to the Golgi apparatus, late endosomes, and lysosomes, with only low expression on the plasma membrane, resulting from spontaneous internalization. Internalization of the G-CSF-R was significantly accelerated by addition of G-CSF. This ligand-induced switch from slow to rapid internalization required the presence of G-CSF-R residue Trp650, previously shown to be essential for its signaling ability. Both spontaneous and ligand-induced internalization depended on 2 distinct amino acid stretches in the G-CSF-R COOH-terminus: 749-755, containing a dileucine internalization motif, and 756-769. Mutation of Ser749 at position –4 of the dileucine motif to Ala significantly reduced the rate of ligand-induced internalization. In contrast, mutation of Ser749 did not affect spontaneous G-CSF-R internalization, suggesting the involvement of a serine-threonine kinase specifically in ligand-accelerated internalization of the G-CSF-R. COOH-terminal truncation mutants of G-CSF-R, found in severe congenital neutropenia, lack the internalization motifs and were completely defective in both spontaneous and ligand-induced internalization. As a result, these mutants showed constitutively high cell-surface expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary intake of fats and sterols has long been known to play a critical role in human health. High proportions of saturated fat, which increase blood cholesterol levels, are mainly found in animal fat and some plant oil (e.g. cocoa butter, palm oil etc.). The predominant polyunsaturated fatty acid (PUFA) in the Western diet is linoleic acid (LA; 18:2n-6), an essential fatty acid, which is commonly found in vegetable seed oils. This is the parent fatty acid of n-6 series PUFA, which can be converted in vivo to C20 and C22 n-6 long chain (LC) PUFA. α‐linolenic acid (ALA; 18:3n-3) is less abundant than LA and is another essential fatty acid; ALA is also present in some vegetable oils such as perilla, flaxseed, canola, soybean and walnut oils, and is the precursor of C20 and C22 n-3 LC PUFA. Sterols are widely distributed in animal tissue and plants, with cholesterol being the major sterol in animal tissue and β-sitosterol, campesterol and stigmasterol being the main sterols in plants. It has long been recognized that an increased dietary intake of saturated fat and (to a lesser extent) cholesterol, raises plasma/serum total and low-density lipoprotein (LDL)-cholesterol, and PUFA decreases these levels. Results from recent studies have shown that plasma/serum levels of lipids and lipoprotein lipids can also be decreased by plant sterols (phytosterols) and diacylglycerol (DAG). Conjugated linoleic acid (CLA, cis-9,trans-11−18:2) has been reported to have anticancer and antidiabetic activities. Fat as the DAG form has also been reported to have anti-obesity effects. Omega-3 PUFA have a beneficial effect on increased heart rate variability, decreased risk of stroke, reduction of both systolic and diastolic blood pressure and may be effective in managing depression in adults. Gamma-linolenic acid (GLA) and phytosterols have an anti-inflammatory activity. The GLA, when combined with docosahexaenoic acid (DHA), have been reported to have a beneficial effect in hyperactive children. These data show that various lipids are powerful bioactive compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the physico-chemical characteristics of protein-protein interactions, protein sequences and overall structural folds have been analyzed previously. To highlight this, discovery and examination of amino acid patterns at the binding sites defined by structural proximity in 3-dimensional (3D) space are essential. In this paper, we investigate the interacting preferences of 3D pattern pairs discovered separately in transient and obligate protein complexes. These 3D pattern pairs are not necessarily sequence-consecutive, but each residue in two groups of amino acids from two proteins in a complex is within certain °A threshold to most residues in the other group. We develop an algorithm called AA-pairs by which every pair of interacting proteins is represented as a bipartite graph, and it discovers all maximal quasi-bicliques from every bipartite graph to form our 3D pattern pairs. From 112 and 2533 highly conserved 3D pattern pairs discovered in the transient and obligate complexes respectively, we observe that Ala and Leu is the highest occuring amino acid in interacting 3D patterns of transient (20.91%) and obligate (33.82%) complexes respectively. From the study on the dipeptide composition on each side of interacting 3D pattern pairs, dipeptides Ala-Ala and Ala-Leu are popular in 3D patterns of both transient and obligate complexes. The interactions between amino acids with large hydrophobicity difference are present more in the transient than in the obligate complexes. On contrary, in obligate complexes, interactions between hydrophobic residues account for the top 5 most occuring amino acid pairings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employed a highly specific photoaffinity labeling procedure, using 14C-labeled S-adenosyl-L-methionine (AdoMet) to define the chemical structure of the AdoMet binding centers on cyclosporin synthetase (CySyn). Tryptic digestion of CySyn photolabeled with either [methyl-14C]AdoMet or [carboxyl-14C]AdoMet yielded the sequence H2N-Asn-Asp-Gly-Leu-Glu-Ser-Tyr-Val-Gly-Ile-Glu-Pro-Ser-Arg-COOH (residues 10644-10657), situated within the N-methyltransferase domain of module 8 of CySyn. Radiosequencing detected Glu10654 and Pro10655 as the major sites of derivatization. [carboxyl-14C]AdoMet in addition labeled Tyr10650. Chymotryptic digestion generated the radiolabeled peptide H2N-Ile-Gly-Leu-Glu-Pro-Ser-Gln-Ser-Ala-Val-Gln-Phe-COOH, corresponding to amino acids 2125-2136 of the N-methyltransferase domain of module 2. The radiolabeled amino acids were identified as Glu2128 and Pro2129, which are equivalent in position and function to the modified residues identified with tryptic digestions in module 8. Homology modeling of the N-methyltransferase domains indicates that these regions conserve the consensus topology of the AdoMet binding fold and consensus cofactor interactions seen in structurally characterized AdoMet-dependent methyltransferases. The modified sequence regions correspond to the motif II consensus sequence element, which is involved in directly complexing the adenine and ribose components of AdoMet. We conclude that the AdoMet binding to nonribosomal peptide synthetase N-methyltransferase domains obeys the consensus cofactor interactions seen among most structurally characterized low molecular weight AdoMet-dependent methyltransferases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hev b 6.01 is a major allergen of natural rubber latex with sensitization of 70–86% of latex glove-allergic subjects. Recently, we mapped the immunodominant T cell sites of Hev b 6.01 to the highly IgE-reactive hevein (Hev b 6.02) domain. Hev b 6.01 contains 14 cysteine residues with multiple disulphide bridges stabilizing tertiary conformation. With the goal of a standardized specific immunotherapy we developed hypoallergenic Hev b 6.01 mutants by site-directed mutagenesis of selected cysteine residues (3, 12, 17, and 41) within the Hev b 6.02 domain. Peptides corresponding to the Hev b 6.02 domain of two of the mutants were also synthesized. These mutants and peptide variants showed markedly decreased or ablated latex-allergic patient serum IgE binding by immunoblotting and ELISA. Basophil activation testing confirmed markedly decreased activation with successive cysteine substitutions of the mutants and complete abrogation with the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide. Retention of T cell reactivity is crucial for effective specific immunotherapy and all mutants and peptide variants maintained their latex-specific T cell reactivity. The ablated allergenicity but retained T cell reactivity of the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide suggests this peptide is a suitable candidate for inclusion in a latex immunotherapy preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A salmon protein hydrolysate (SPH) was developed containing several angiotensin I-converting enzyme (ACE) inhibitory tripeptides the most abundant of which were Val-Leu-Trp, Val-Phe-Tyr, and Leu-Ala-Phe. Simulated digestion experiments showed that active constituents of SPH would survive in the digestive tract and be available for absorption into the bloodstream. In fact, ACE inhibitory activity was improved following simulated digestion suggesting that there were larger peptides in SPH that might contribute to bioactivity in vivo. A single oral dose (1,500 mg/kg body mass) of SPH significantly lowered blood pressure in spontaneously hypertensive rats (SHR). The treatment of SHR with either SPH fraction (<3,000 Da) or SPH fraction (>3,000 Da) reduced blood pressure. We conclude that the ability of SPH to lower blood pressure is due to a combination of ACE inhibitory tripeptides as identified, as well as additional unknown, peptide species that are generated during digestion of SPH in the gastrointestinal tract.

Relevância:

10.00% 10.00%

Publicador: