4 resultados para AC IMPEDANCE

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binary and ternary addition of 2 wt.% LiBF4 and 2 wt.% amorphous polyethylene oxide (aPEO) respectively to the plastic crystal forming salt P13BF4 (where P13+=methylpropyl pyrrolidinium cation) was investigated with specific focus on the phase behaviour and evaluation of transport characteristics. Differential scanning calorimetry (DSC), optical thermomicroscopy, solid state nuclear magnetic resonance (NMR), and AC impedance spectroscopy were used to develop an understanding of the conduction process in the pure and mixed systems. The morphology of the ternary compound appeared as hexagonal spherulites upon solidification. Multinuclear NMR Pulsed Field Gradient measurements (1H,19F,7Li) to probe both cation and anion diffusion coefficients are reported. The anion is shown to be the most diffusive (at 320 K:19F=2.5×10−11 m2 s−1; 1H: 1.8×10−11 m2 s−1; 7Li: 1.1×10−11 m2 s−1) in the ternary compound, with enhanced conductivity (2.7×10−5 S cm−1 at 310 K) just below the melt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New polymer electrolytes were synthesized and characterized based on a new polymer host. The motivation was to produce a host polymer with a high dielectric constant which should reduce ion clustering with an attendant increased conductivity. The new polymer host, poly(diethylene glycol carbonate) and its sodium triflate complexes were characterized by thermal analysis and AC impedance measurements. The polycarbonate backbone appears less flexible than the polyether hosts as evidenced by the higher glass transition temperatures. The conductivity for the sodium triflate complexes was measured as ~ 10−5 S cm−1 at 55 °C and the dielectric constant of the host polymer was found to be 3.6 at 3 GHz. The low conductivity is attributed to rigidity of the polycarbonate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear magnetic resonance spectroscopy (n.m.r.), dynamic mechanical thermal analysis (d.m.t.a.) and AC impedance techniques have been used in combination to probe the effect of electrolyte composition in an archetypal solid polymer electrolyte (SPE). A series of solid polymer electrolytes (SPEs) based on a urethane-crosslinked trifunctional poly(ethylene glycol) polymer host containing dissolved ionic species (LiClO4 and LiCF3SO3) have been studied. D.m.t.a. has established that increasing LiClO4 concentration causes a decrease in the polymer segmental mobility, owing to the formation of transient crosslinks via cation-polymer interaction. Investigation of the distribution of mechanical/structural relaxation times for the LiClO4/polymer complex with d.m.t.a. reveals that increasing LiClO4 concentration causes a slight broadening of the distribution, indicating a more heterogeneous environment. Results of n.m.r. 7Li T1 and T2 relaxation experiments support the idea that higher salt concentrations encourage ionic aggregation. This is of critical importance in determining the conductivity of the material since it affects the number of charge carriers available. Introduction of the plasticiser tetraglyme into the LiClO4-based SPEs suppresses the glass transition temperature of the SPE, and causes a significant broadening of the relaxation time distribution (as measured by d.m.t.a.).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a new amino acid derivative, namely Adenine-L-Alanine ramification (ALAR) was synthesized and investigated as a green corrosion inhibitor for X80 pipeline steel in 0.1 mol/L hydrochloric acid solution using the weight loss, AC impedance, and polarization curve method. The structure of the derivative was characterized by IR and UV–vis spectrum. The weight loss and AC impedance found that the inhibition efficiency increased with the increase in concentration of the inhibitor but decreased with rise in temperature, the corrosion inhibition efficiency attains 91.26% in 8 × 10−2 g/L concentration at 30 °C. The polarization studies showed that the studied amino acid derivative can be used as a corrosion inhibitor. The surface of inhibited and uninhibited specimens was analyzed by scanning electron microscopy and the adsorption of the inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. The quantum chemical descriptors such as the energy of highest occupied molecular orbital, energy of lowest unoccupied molecular orbital were calculated and the inhibition mechanism can be analyzed by the distribution of electrons. Analysis indicated that the inhibitor molecular and empty d orbital of metal forms the coordination bond, covers on the surface of metal, and prevents corrosion reaction.