21 resultados para 650

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructures and mechanical properties of a low carbon steel were studied after plate rolling and bar rolling. Plate rolling is characterized as a monotonic compressive loading, while bar rolling is characterized as a cross-compressive loading. A four-pass plate rolling and bar rolling experiment was designed so that the material experiences the same amount of strain at each pass during rolling. The rolling experiment was performed at moderately high temperatures (450, 550 and 650 °C). The microstructures and mechanical properties of the low carbon steel acquired from the two types of rolling experiments were compared. The results revealed that differences of loading path attributed by monotonic loading (plate rolling) and cross loading (bar rolling) significantly influenced the microstructures and mechanical properties such as yield stress, ultimate tensile stress, strain hardening exponent and elongation of the low carbon steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To examine socio-demographic and psychosocial moderators, and self-efficacy as a mediator of the cross-sectional relationships between having access to recreational facilities and leisure-time physical activity (LTPA); to investigate the extent to which the environment-LTPA associations could be explained by self-selection to neighborhoods.

Design: A two-stage stratified sampling design was used to recruit 2,650 adults (aged 20-65) from 32 urban communities varying in walkability and socioeconomic status. Participants reported perceived access to facilities and home equipment for LTPA, weekly minutes of LTPA, self-efficacy for and enjoyment of LTPA, reasons for neighborhood selection, and socio-demographic characteristics.

Main Outcome Measures:
Self-reported recreational walking and other forms of moderate-to-vigorous LTPA expressed in MET-minutes.

Results: Specific types of recreational facilities were independently  associated with LTPA. Age, education, being overweight/ obese, reasons for neighborhood selection, enjoyment of, and self-efficacy for LTPA moderated these relationships. Self-efficacy was not a significant mediator of these cross-sectional associations.

Conclusion:
These findings have potentially significant implications for the planning of environmental interventions aimed at increasing population-level LTPA particularly in those who are less attitudinally inclined to being physically active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined validity evidence for the Australian version of the Neighborhood Environment Walkability Scale (NEWS-AU). A stratified two-stage cluster sampling design was used to recruit 2,650 adults from Adelaide (Australia). The sample was drawn from residential addresses within eight high-walkable and eight low-walkable suburbs matched for socio-economic status (SES). Neighborhood walkability was measured using Geographic Information Systems data on dwelling density, intersection density, net retail area, and land-use mix. Participants completed the NEWS-AU and reported weekly minutes of walking for transport and recreation (International Physical Activity Questionnaire [IPAQ]). Multilevel confirmatory factor analysis (MCFA) was used to define the individual- and Census Collection District (CCD)-level measurement model of the NEWS-AU. Seven individual-level and five CCD-level factors were identified. These measurement models were somewhat similar to those of the original Neighborhood Environment Walkability Scale (NEWS). Patterns of associations between the NEWS-AU factors/scales and the walking measures provided some validity evidence for the instrument.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of nano-size rutile filler on the microwave dielectric properties of PTFE composites were investigated and the results were compared with that of micron size rutile filled composites. Nano-size rutile powder was prepared through sol–gel route and the filled PTFE composites were fabricated through SMECH process. Different characterization techniques such as powder X-ray diffraction, SEM, BET, TEM and TG/DSC were employed to analyze the nature of ceramic filler. The dielectric properties of filled composites were evaluated at microwave frequency region using waveguide cavity perturbation technique. Different theoretical models have been employed to predict the variation of dielectric constant with respect to filler loading. The moisture absorption characteristics of nano-rutile filled PTFE composites were measured as per IPC-TM-650 2.6.2 standards. Composites show high dielectric constant at X-band frequency region with relatively high loss tangent compared to micron size counterpart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the bending deformation of a cantilever biosensor based on a single-walled carbon nanotube (CNT) and single-walled boron nitride nanotube (BNNT) due to bioparticle detection. Through 3-D modeling and simulations, the performance of the CNT and BNNT cantilever biosensors is analyzed. It is found that the BNNT cantilever has better response and sensitivity compared to the CNT counterpart. Additionally, an algorithm for an electrostatic-mechanical coupled system is developed. The cantilever (both BNNT and CNT) is modelled by accounting that a conductive polymer is deposited onto the nanotube surfaces. Two main approaches are considered for the mechanical deformation of the nanotube beam. The first one is differential surface stress produced by the binding of biomolecules onto the surface. The second one is the charge released from the biomolecular interaction. Also, different ambient conditions are considered in the study of sensitivity. Sodium Dodisyl Sulphate (SDS) provides better bending deformation than the air medium. Other parameters including length of beam, variation of beam's location, and chiralities are considered in the design. The results are in excellent agreement with the electrostatic equations that govern the deformation of cantilever.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Offline handwritten recognition is an important automated process in pattern recognition and computer vision field. This paper presents an approach of polar coordinate-based handwritten recognition system involving Support Vector Machines (SVM) classification methodology to achieve high recognition performance. We provide comparison and evaluation for zoning feature extraction methods applied in Polar system. The recognition results we proposed were trained and tested by using SVM with a set of 650 handwritten character images. All the input images are segmented (isolated) handwritten characters. Compared with Cartesian based handwritten recognition system, the recognition rate is more stable and improved up to 86.63%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study characterizes BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) perovskite oxide and evaluates it as a potential cathode material for proton-conducting SOFCs with a BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. A four-probe DC conductivity measurement demonstrated that BCFN has a modest electrical conductivity of 2–15 S cm−1 in air with p-type semiconducting behavior. An electrical conductivity relaxation test showed that BCFN has higher Dchem and Kchem than the well-known Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxide. In addition, it has relatively low thermal expansion coefficients (TECs) with values of 18.2 × 10−6 K−1 and 14.4 × 10−6 K−1 at temperature ranges of 30–900 °C and 30–500 °C, respectively. The phase reaction between BCFN and BZCY was investigated using powder and pellet reactions. EDX and XRD characterizations demonstrated that BCFN had lower reactivity with the BZCY electrolyte than strontium-containing perovskite oxides such as SrCo0.9Nb0.1O3-δ and Ba0.6Sr0.4Co0.9Nb0.1O3−δ. The impedance of BCFN was oxygen partial pressure dependent. Introducing water into the cathode atmosphere reduced the size of both the high-frequency and low-frequency arcs of the impedance spectra due to facilitated proton hopping. The cathode polarization resistance and overpotential at a current density of 100 mA cm−2 were 0.85 Ω cm−2 and 110 mV in dry air, which decreased to 0.43 Ω cm−2 and 52 mV, respectively, in wet air (∼3% H2O) at 650 °C. A decrease in impedance was also observed with polarization time; this was possibly caused by polarization-induced microstructure optimization. A promising peak power density of ∼585 mW cm−2 was demonstrated by an anode-supported cell with a BCFN cathode at 700 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

in situ high-temperature X-ray diffraction and thermal gravimetric- differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched powder, were applied to study crystal structure and phase transformations in Ba2Bi0.1Sc0.2Co 1.7O6-x (BBSC). Heating BBSC in air to over 800 °C produces a pure cubic phase with space group Fm3m (no. 225), and cooling down below 800 °C leads to a mixture of three noncubic phases including an unknown phase between 200 and 650 °C, a 2H hexagonal BaCoO3 with space group P63/mmc (no. 194) between 600 and 800 °C, and an intermediate phase at 800 °C. These three phases exist concurrently with the major cubic phase. The weight gain and loss between 300 and 900 °C suggest the occurrence of cobalt reduction, oxidation, and disproportion reactions with dominant reduction reaction at above 600 °C. The thermal expansion of BBSC was also examined by dilatometry. BBSC has a highly temperature-dependent thermal expansion coefficient which relates well with its structure evolution. Furthermore, the oxygen reduction reaction (ORR) of BBSC was probed by symmetrical cell and three-electrode configurations. The presence of hexagonal phase at 700 °C rarely affects the ORR performance of BBSC as evidenced by a slight increase of its area-specific resistance (ASR) value following 48 h of testing in this three-electrode configuration. This observation is in contrast to the commonly held point of view that noncubic phase deteriorates performance of perovskite compounds (especially in oxygen transport applications). Moreover, cathodic polarization treatment, for example, current discharge from BBSC (tested in three-electrode configuration), can be utilized to recover the original ORR performance. The cubic structure seems to be retained on the cathodic polarization - the normal cathode operating mode in fuel cells. Stable 72-h performance of BBSC in cathodic polarization mode further confirms that despite the presence of phase impurities, BBSC still demonstrates good performance between 500 and 700 °C, the desired intermediate operating temperature in solid oxide fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. The cost effectiveness of a general practice-based program for managing coronary heart disease (CHD) patients in Australia remains uncertain. We have explored this through an economic model.

Methods. A secondary prevention program based on initial clinical assessment and 3 monthly review, optimising of pharmacotherapies and lifestyle modification, supported by a disease registry and financial incentives for quality of care and outcomes achieved was assessed in terms of incremental cost effectiveness ratio (ICER), in Australian dollars per disability adjusted life year (DALY) prevented.

Results. Based on 2006 estimates, 263 487 DALYs were attributable to CHD in Australia. The proposed program would add $115 650 000 to the annual national heath expenditure. Using an estimated 15% reduction in death and disability and a 40% estimated program uptake, the program’s ICER is $8081 per DALY prevented. With more conservative estimates of effectiveness and uptake, estimates of up to $38 316 per DALY are observed in sensitivity analysis.

Conclusions. Although innovation in CHD management promises improved future patient outcomes, many therapies and strategies proven to reduce morbidity and mortality are available today. A general practice-based program for the optimal application of current therapies is likely to be cost-effective and provide substantial and sustainable benefits to the Australian community.

What is known about this topic? Chronic disease management programs are known to provide gains with respect to reductions in death and disability among patients with coronary heart disease. The cost effectiveness of such programs in the Australian context is not known.

What does this paper add? This paper suggests that implementing a coronary heart disease program in Australia is highly cost-effective across a broad range of assumptions of uptake and effectiveness.

What are the implications for practitioners? These data provide the economic rationale for the implementation of a chronic disease management program with a disease registry and regular review in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object

The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM).
Methods

The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ~ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra.
Results

The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV.
Conclusions

Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nature and mechanism of interfacial reactions between boron nitride nanotubes (BNNTs) and aluminum matrix at high temperature (650 °C) are studied using high-resolution transmission electron microscopy (HRTEM). This study analyzes the feasibility of the use of BNNTs as reinforcement in aluminum matrix composites for structural application, for which interface plays a critical role. Thermodynamic comparison of aluminum (Al)-BNNT with analogous Al-carbon nanotube (Al-CNT) system reveals lesser amount of reaction in the former. Experimental observation also reveals thin (~7 nm) reaction-product formation at Al-BNNT interface even after 120 min of exposure at 650 °C. The spatial distribution of the reaction-product species at the interface is governed by the competitive diffusion of N, Al, and B. Morphology of the reaction products are influenced by their orientation relationship with BNNT walls. A theoretical prediction on Al-BNNT interface in macroscale composite suggests the formation of strong bond between the matrix and reinforcement phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pharmaceutical industry in Pakistan is worth around US$ l.18 billion, with annual growth in 2010 approaching 10 per cent (Khan, 2012). There are more than 650 registered companies, including 31 multinationals, which in 2006 had a market share in value terms of 53.3 per cent, with national firms controlling the remaining 46.7 per cent (IMS Health, 2007). In 2007 medicines worth about US$100 million were exported. Medicines are a vital component of healthcare, and Pakistan spends around three-quarters of its healthcare budget on medicines (WHO, 2004). This chapter provides an overview, from a public health perspective, of the national pharmaceutical market and the development of drug policies and regulation. Pakistan adopted a Trade Related Aspects of Intellectual Property Rights (TRIPS) compliant patent regime in 2000, and the intersection between patents and public health is a central policy challenge. This chapter highlights key issues related to intellectual property, Free Trade Agreements (FTAs), and production and access to medicines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite cereal grains being grown on 5 continents where goats are kept, there is little information on the excretion of whole cereal grains when fed to goats. We determined the effects of various dietary treatments on whole grain and starch loss in the faeces of Angora goats. In Experiment 1 there were 4 replicates of the factorial design: (a) 2 grain types (barley, oats); (b) whole grain or processing (milled barley or rolled oats); (c) 2 roughage qualities (Persian clover hay, barley straw); and (d) 2 feeding levels (level 1, 150 g/d of grain, 250 g/d of roughage; level 2, 250 g/d of grain, ad libitum roughage). In Experiment 2, which immediately followed Experiment 1, and aimed to detect carry over effects of previous feeding of barley straw and grain processing, feed levels were either 650 g/d grain or 400 g/d grain with 550 g/d Persian clover hay. Data were analysed by ANOVA. In Experiment 1, processing had no effect on digestible dry matter intake. The number of whole grains lost per 100 g of fresh faeces and whole grains loss as the % of grain dry matter intake were affected by an interaction between processing and roughage quality. Whole grain fed with Persian clover hay had greater grain loss than all other diets. Whole grain loss was greater with whole grain than with processed grain. Level of feeding had no effects on grain loss. In Experiment 2, more whole grains were lost in fresh faeces when fed with Persian clover hay than when fed without hay, an effect of previous feeding with barley straw reduced whole grain excretion, and more barley grains were lost than oat grain. Faecal starch was affected, with higher levels when whole barley grain was fed, particularly with Persian clover hay, or when previously fed barley straw at a high level. Feeding grain at 650 g/d did not increase grain or starch excretion. Whole grains represented a small loss of grain dry matter intake in faeces, averaging 0.8% with a maximum recorded of 2.6%. Faecal concentration of the whole grains may be altered by grain size and the digestibility of the roughage component of the diet. In this study an additional cost of 3% for processing grains would not have provided economic benefits.