2 resultados para 500.2 Scienze fisiche

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human  albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 µM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from   α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 µM) inhibited copper uptake from albumin by 20–30% in both cell types and that from {alpha}2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms.α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Randomised, placebo-controlled trials are needed to provide evidence demonstrating safe, effective interventions that reduce falls and fractures in the elderly. The quality of a clinical trial is dependent on successful recruitment of the target participant group. This paper documents the successes and failures of recruiting over 2,000 women aged at least 70 years and at higher risk of falls or fractures onto a placebo-controlled trial of six years duration. The characteristics of study participants at baseline are also described for this study.

Methods The Vital D Study recruited older women identified at high risk of fracture through the use of an eligibility algorithm, adapted from identified risk factors for hip fracture. Participants were randomised to orally receive either 500,000 IU vitamin D3 (cholecalciferol) or placebo every autumn for five consecutive years. A variety of recruitment strategies were employed to attract potential participants.

Results Of the 2,317 participants randomised onto the study, 74% (n = 1716/2317) were consented onto the study in the last five months of recruiting. This was largely due to the success of a targeted mail-out. Prior to this only 541 women were consented in the 18 months of recruiting. A total of 70% of all participants were recruited as a result of targeted mail-out. The response rate from the letters increased from 2 to 7% following revision of the material by a public relations company. Participant demographic or risk factor profile did not differ between those recruited by targeted mail-outs compared with other methods.

Conclusion The most successful recruitment strategy was the targeted mail-out and the response rate was no higher in the local region where the study had extensive exposure through other recruiting strategies. The strategies that were labour-intensive and did not result in successful recruitment include the activities directed towards the GP medical centres. Comprehensive recruitment programs employ overlapping strategies simultaneously with ongoing assessment of recruitment rates. In our experience, and others direct mail-outs work best although rights to privacy must be respected.